Share:


Robust controller for supersonic unmanned aerial vehicle

    Vitalii Burnashev   Affiliation
    ; Aleksandr Zbrutsky   Affiliation

Abstract

The article is devoted to the synthesis of robust controllers of supersonic unmanned aerial vehicle motion parameters. During the flight, the velocity and altitude of the aircraft varies rapidly within wide limits. Therefore, the required quality of control on each trajectory is provided by a set of dynamic controllers with constant coefficients. The article substantiates the number of such controllers, researches the range of their efficiency. The obtained restrictions on the amplitude-frequency characteristics and weight functions are given. Transients are shown.

Keyword : supersonic unmanned aerial vehicle, robust controller, flight trajectory, control quality, transient, controller synthesis

How to Cite
Burnashev, V., & Zbrutsky, A. (2019). Robust controller for supersonic unmanned aerial vehicle. Aviation, 23(1), 31-35. https://doi.org/10.3846/aviation.2019.10300
Published in Issue
May 23, 2019
Abstract Views
1113
PDF Downloads
744
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Ablesimov, O. K., & Gonchar, A. Y. (2013). Adaptive control system for UAV with state observer. In IEEE 2nd International Conference Actual Problems of Unmanned Air Vehicles Developments Proceedings (APUAVD), Kiev, 15–17 October 2013 (pp. 203-205). IEEE. https://doi.org/10.1109/APUAVD.2013.6705326

Babar, M. Z., Ali, S. U., Shah, M. Z., Samar, R., Bhatti, A. I., & Afzal, W. (2013). Robust control of UAVs using H∞ control paradigm. In IEEE 9th International Conference on Emerging Technologies (ICET), Islamabad, 9–10 December 2013 (pp. 1-5). IEEE. https://doi.org/10.1109/ICET.2013.6743506

Bogoslavets, R. O., Burnashev, V. V., & Ponomarenko, K.V. (2017) Robastna systema keruvannya bezpіlotnym lіtalnym aparatom. Mechanics of Gyroscopic Systems, 1(34), 14-21. (in Ukrainian). https://doi.org/10.20535/0203-3771342017122321

Fradkov, A., & Andrievsky, B. (2005). Combined adaptive controller for UAV guidance. European Journal of Control, 11(1), 71-79. https://doi.org/10.3166/ejc.11.71-79

Jafar, A., Fasih Ur Rehman, S., Fazal Ur Rehman, S., & Nisar, A. (2016). A Robust H infinity control law for unmanned aerial vehicle against atmospheric turbulence. In 2nd IEEE International Conference on Robotics and Artificial Intelligence (ICRAI), Islamabad 1–2 November 2016 (pp. 87-92). IEEE. https://doi.org/10.1109/ICRAI.2016.7791234

Lebedev, A. A., & Chernobrovkin, L. S. (1973). Dinamika poleta bespilotnykh letatel’nykh apparatov. Uchebnoye posobiye dlya vuzov (Izdaniye 2-ye, pererabotannoye i dopolnennoye). Moskva: Mashinostroyeniye. (in Russian).

Lin, F., Zhang, W., & Brandt, D. B. (1999). Robust hovering control of a PVTOL aircraft. IEEE Transactions on Control Systems Technology, 7(3), 343-351. https://doi.org/10.1109/87.761054

López, J., Dormido, R., Dormido, S., & Gómez, J. P. (2015). A Robust ∞ controller for an UAV flight control system. The Scientific World Journal, 2015, 11 p. https://doi.org/10.1155/2015/403236

Oktay, T., Çelik, H., & Türkmen, I. (2018). Maximizing autonomous performance of fixed-wing unmanned aerial vehicle to reduce motion blur in taken images. Proceedings of the Institution of Mechanical Engineers Part I – Journal of Systems and Control Engineering, 232, 857-868. https://doi.org/10.1177/0959651818765027

Oktay, T., & Çoban, S. (2017). Simultaneous longitudinal and lateral flight control systems design for both passive and active morphing TUAVs. Elektronika ir elektrotechnika, 23(5), 15-20. https://doi.org/10.5755/j01.eie.23.5.19238

Oktay, T., Konar, M., Onay, M., Aydin, M., & Abdallah Mohamed, M. (2016). Simultaneous small UAV and autopilot system design. Aircraft Engineering and Aerospace Technology, 88(6), 818-834. https://doi.org/10.1108/AEAT-04-2015-0097

Rahmouni, M., & Malysheva, J. (2012). An integrated aircraft navigation system with optical horizon sensor. Aviation, 16(4), 109-114. https://doi.org/10.3846/16487788.2012.753681

Rui, W., Zhou, Z., & Yanhang, S. (2007). Robust landing control and simulation for flying wing UAV. In 2007 Chinese Control Conference, Hunan, 26–31 July 2007 (pp. 600-604). https://doi.org/10.1109/CHICC.2006.4346934

Kim, S.-H., Kim, Y.-S., & Song, C. (2004). A robust adaptive nonlinear control approach to missile autopilot design. Control Engineering Practice, 12(2), 149-154. https://doi.org/10.1016/S0967-0661(03)00016-9

Skogestad, S., & Postlethwaite, I. (2005). Multivariable feedback control: analysis and design (2nd ed.). New York: Wiley.

Sobhani, R. (2007). A nonlinear digital robust controller for UAV. In IEEE Aerospace Conference, Big Sky, MT, 3–10 March 2007 (pp. 1-6). https://doi.org/10.1109/AERO.2007.352758

Turkoglu, K., & Jafarov, E. M. (2007). Augmented optimal LQR control system design for the longitudinal flight dynamics of an UAV: Inner and outer loop concets. In 9th WSEAS International Conference on Automatic Control, Modeling & Simulation, Istanbul, 27–29 May 2007 (pp. 100-105).

Wang, J., Patel, V., Woolsey, C. A., Hovakimyan, N., & Schmale, D. (2007). L1 adaptive control of a UAV for aerobiological sampling. In American Control Conference, New York, NY, 9–13 July 2007 (pp. 4660-4665). https://doi.org/10.1109/ACC.2007.4283121

Zavalnaya, O. S., & Burnashev, V. V. (2015). Upravleniye dvizheniyem bespilotnogo letatel’nogo apparata v usloviyakh neopredelennosti. Mekhanika giroskopicheskikh system, (29), 15-23. (in Russian). https://doi.org/10.20535/0203-377129201562696

Zbrutsky, A. V., Malysheva, J. A., & Burnashev, V. V. (2014). Navigation and orientation system with optical horizon sensor for mini UAV. IEEE 3rd International Conference on Methods and Systems of Navigation and Motion Control, Kiev, 14–17 October 2014 (pp. 15-17). IEEE. https://doi.org/10.1109/MSNMC.2014.6979717