Share:


Linear dynamic mathematical model and identification of micro turbojet engine for Turbofan Power Ratio control

    Khaoula Derbel   Affiliation
    ; Károly Beneda   Affiliation

Abstract

Micro turbojets can be used for propulsion of civilian and military aircraft, consequently their investigation and control is essential. Although these power plants exhibit nonlinear behaviour, their control can be based on linearized mathematical models in a narrow neighbourhood of a selected operating point and can be extended by using robust control laws like H∞ or Linear Quadratic Integrating (LQI). The primary aim of the present paper is to develop a novel parametric linear mathematical model based on state space representation for micro turbojet engines and the thrust parameter being Turbofan Power Ratio (TPR). This parameter is used by recent Rolls-Royce commercial turbofan engines but can be applied for single stream turbojet power plants as well, as it has been proven by the authors previously. An additional goal is to perform the identification for a particular type based on measurements of a real engine. This model has been found suitable for automatic control of the selected engine with respect of TPR, this has been validated by simulations conducted in MATLAB® Simulink® environment using acquired data from transient operational modes.

Keyword : gas turbine engine, turbojet, Turbofan Power Ratio, linear mathematical model, state space representation, turbine engine control system, system identification, dynamic simulation

How to Cite
Derbel, K., & Beneda, K. (2019). Linear dynamic mathematical model and identification of micro turbojet engine for Turbofan Power Ratio control. Aviation, 23(2), 54-64. https://doi.org/10.3846/aviation.2019.11653
Published in Issue
Dec 17, 2019
Abstract Views
1454
PDF Downloads
1068
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Andoga, R., Főző, L., Madarász, L., & Judičák, J. (2010). Advanced methods of turbojet engines’ control. In Proceedings of the IEEE 8th International Symposium on Applied Machine Intelligence and Informatics (SAMI) (pp. 141-144). IEEE Xplore. https://doi.org/10.1109/SAMI.2010.5423749

Beneda, K. (2015). Modular electronic turbojet control system based on TPR. Acta Avionica, 17(1).

Beneda, R. Andoga, R., & Főző, L. (2018). Linear mathematical model for state-space representation of small scale turbojet engine with variable exhaust nozzle. Periodica Polytechnica Transportation Engineering, 46(1), 1-10. https://doi.org/10.3311/PPtr.10605

Bicsák, G., & Veress, A. (2017). New adaptation of actuator disc method for aircraft propeller CFD analyses. Acta Polytechnica Hungarica, 14(6), 95-114.

Cwojdziński, L., & Adamski, M. (2014). Power units and power supply systems in UAV. Aviation, 18(1), 1-8. https://doi.org/10.3846/16487788.2014.865938

Davies, C., Holt, J. E., & Griffin, I. A. (2006). Benefits of inverse model control of Rolls-Royce civil gas turbines. In Proceedings of International Control Conference 2006. Glasgow, UK. ISBN 0 947649549.

Dinc, A. (2016). Optimization of a turboprop UAV for maximum loiter and specific power using genetic algorithm. International Journal of Turbo and Jet Engines, 33(3), 265-273. https://doi.org/10.1515/tjj-2015-0030

do Nascimento, M. A. R., de Oliveira Rodrigues, L., dos Santos, E. C., Gomes, E. E. B., Dias, F. L. G., Velásques, E. I. G., & Carrillo, R. A. M. (2013). Micro gas turbine engine: A review. In Benini, E. (Ed.), Progress in Gas Turbine Performance. Intech Open, 2, ch. 5, 107-141. https://doi.org/10.5772/54444

Dutczak, J. (2016). Micro turbine engines for drones propulsion. In Proceedings of the 2016 IOP Conference Series: Materials Science and Engineering, 148, 012063. https://doi.org/10.1088/1757-899X/148/1/012063

Elkhateeb, N. A., Badr, R. I., & Abouelsoud, A. A. (2014). Constrained linear state feedback controller for a low-power gas turbine model. Journal of Control Engineering and Technology, 4(1), 66-75.

Garrett turbocharger compressor maps. (n.d.). Retrieved from http://turbocharged.com/catalog/compmaps/fig1.html

Garrett turbocharger turbine maps. (n.d.). Retrieved from http://www.turbobygarrett.com/turbobygarrett/compressormaps

Katolicky, Z., Bušov, B., & Bartlova, M. (2014). Turbojet engine innovation and TRIZ. In Proceedings of the 16th International Conference on Mechatronics (pp. 16-23). Brno, Czech Republic. https://doi.org/10.1109/MECHATRONIKA.2014.7018230

Kuz’michev, V. S., Tkachenko, A. Y., Filinov, E. P., Krupenich, I. N., & Ostapyuk, Y. A. (2017). Optimization of working process parameters of small-scale turbojet for unmanned aircraft. In Proceedings of the 2017 International Conference on Mechanical, System and Control Engineering (ICMSC) (pp. 125-129). St. Petersburg, Russia. https://doi.org/10.1109/ICMSC.2017.7959456

Nyulászi, L., Andoga, R., Butka, P., Főző, L., Kovacs, R., & Moravec, T. (2018). Fault detection and isolation of an aircraft turbojet engine using a multi-sensor network and multiple model approach. Acta Polytechnica Hungarica, 15(2), 189-209. https://doi.org/10.12700/APH.15.1.2018.2.10

Seo, J. M., Lim, H. S., Park, J. Y., Park, M. R., & Choi, B. S. (2017). Development and experimental investigation of a 500-Wclass ultra-micro gas turbine power generator. Journal of Energy, 124, 9-18. https://doi.org/10.1016/j.energy.2017.02.012

Tavakolpour-Saleh, A. R., Nasib, S. A. R., Sepasyan, A., & Hashemi, S. M. (2015). Parametric and nonparametric system identification of an experimental turbojet engine. Aerospace Science and Technology, 43, 21-29. https://doi.org/10.1016/j.ast.2015.02.013

Tudosie, A. (2012). Aircraft single-spool single-jet engine with variable area exhaust nozzle. In Proceedings of the International Conference on Applied and Theoretical Electricity (ICATE) (pp. 141-144). Craiova, Romania. https://doi.org/10.1109/ICATE.2012.6403465

Williams, R. L., & Lawrence, D. A. (2007). Linear state-space control systems. John Wiley and Sons, Hoboken, N.J. https://doi.org/10.1002/9780470117873