Share:


Property appraisal via lens of property registration abundance – real estate market asymmetry assessment

    Marek Walacik Affiliation

Abstract

Information on transaction prices and the ones characterizing the property as the subject of the valuation are essential for a proper valuation process. The accuracy and completeness of the collected set of information directly affects the quality of the valuation process. When market participants operate on the basis of unequal sets of information, information asymmetry is revealed. This research investigates the effects of information asymmetry on property market from the perspective of property registration abundance and mass appraisal systems. It explores how disparities in information abundance and quality within property registration and appraisal processes can affect market fairness and transparency. Employing a mixed-methods approach, it analyses property transaction data and tries to investigate effects of information asymmetry. The findings indicate that enhanced transparency and data quality can significantly reduce valuation discrepancies and lead to a more equitable real estate market. The study concludes with recommendations aimed at justifying information asymmetry’s negative effects, supporting for policies that promote information uniformity to improve the fairness and efficiency of property registration and mass appraisal practices.

Keyword : information asymmetry, property valuation, random forest, neural networks, multiple linear regression

How to Cite
Walacik, M. (2024). Property appraisal via lens of property registration abundance – real estate market asymmetry assessment. International Journal of Strategic Property Management, 28(6), 393–410. https://doi.org/10.3846/ijspm.2024.22686
Published in Issue
Nov 21, 2024
Abstract Views
160
PDF Downloads
145
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Aizenman, J., & Jinjarak, Y. (2009). Current account patterns and national real estate markets. Journal of Urban Economics, 66(2), 75–89. https://doi.org/10.1016/j.jue.2009.05.002

Alenany, E., Lekham, L. A., & Lu, S. (2021). Integrated clustering regression for real estate valuation. Real Estate Finance, 1–36. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3835967

Alonso, W. (1964). Location and land use: Toward a general theory of land rent. Harvard University Press. https://doi.org/10.4159/harvard.9780674730854

Ambrose, B. W., & Diop, M. (2021). Information asymmetry, regulations and equilibrium outcomes: Theory and evidence from the housing rental market. Real Estate Economics, 49(S1), 74–110. https://doi.org/10.1111/1540-6229.12262

Ambrose, B. W., & Shen, L. (2023). Past experiences and investment decisions: Evidence from real estate markets. The Journal of Real Estate Finance and Economics, 66(2), 300–326. https://doi.org/10.1007/s11146-021-09844-2

Batabyal, A. A. (2023). The theory of externalities. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4643096

Ben-Shahar, D., & Golan, R. (2019). Improved information shock and price dispersion: A natural experiment in the housing market. Journal of Urban Economics, 112, 70–84. https://doi.org/10.1016/J.JUE.2019.05.008

Bergh, D. D., Ketchen, D. J., Orlandi, I., Heugens, P. P. M. A. R., & Boyd, B. K. (2019). Information asymmetry in management research: Past accomplishments and future opportunities. Journal of Management, 45(1), 122–158. https://doi.org/10.1177/0149206318798026

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324

Brzezicka, J., Łaszek, J., Olszewski, K., & Wisniewski, R. (2022). The missing asymmetry in the Polish house price cycle: An analysis of the behaviour of house prices in 17 major cities. Journal of Housing and the Built Environment, 37(2), 1029–1056. https://doi.org/10.1007/s10901-021-09861-w

Buodd, M. F., & Derås, E. J. (2020). Machine learning for property valuation: An empirical study of how property price predictions can improve property tax estimations in Norway [Master thesis, Norwegian School of Economics]. NHH Brage.

Campbell, S. (2018). Green cities, growing cities, just cities? Urban planning and the contradictions of sustainable development. In J. Stein (Ed.), Classic readings in urban planning (pp. 308–326). Routledge. https://doi.org/10.4324/9781351179522-25

Chau, K. W., Wong, S. K., & Yiu, C. Y. (2007). Housing quality in the forward contracts market. Journal of Real Estate Finance and Economics, 34(3), 313–325. https://doi.org/10.1007/s11146-007-9018-x

Chau, K. W., & Wong, S. K. (2016). Information asymmetry and the rent and vacancy rate dynamics in the office market. The Journal of Real Estate Finance and Economics, 53, 162–183. https://doi.org/10.1007/s11146-015-9510-7

Chinloy, P., Hardin III, W., & Wu, Z. (2013). Price, place, people, and local experience. Journal of Real Estate Research, 35(4), 477–506. https://doi.org/10.1080/10835547.2013.12091376

Cornes, R., & Sandler, T. (1996). The theory of externalities, public goods, and club goods. Cambridge University Press. https://doi.org/10.1017/cbo9781139174312

d’Amato, M., & Kauko, T. (2017). Appraisal methods and the non-agency mortgage crisis. In M. d’Amato & T. Kauko (Eds.), Advances in automated valuation modeling: AVM after the non-agency mortgage crisis (pp. 23–32). Springer International Publishing. https://doi.org/10.1007/978-3-319-49746-4_2

Danastri Yuwono, A., Khairunnisa, A., Ikasanti, M., Adilah, N., & Widiyani, W. (2023). Pendekatan highest and best use dalam pelestarian bangunan bersejarah. Arsitektura: Jurnal Ilmiah Arsitektur dan Lingkungan Binaan, 21(2), 247–260. https://doi.org/10.20961/arst.v21i2.77861

Dennis, J. E., & Schnabel, R. B. (1996). Secant methods for unconstrained minimization. In Numerical methods for unconstrained optimization and nonlinear equations (pp. 194–215). Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9781611971200.ch9

Dotzour, M., Grissom, T., Liu, C., & Pearson, T. (1990). Highest and best use: The evolving paradigm. Journal of Real Estate Research, 5(1), 17–32. https://doi.org/10.1080/10835547.1990.12090599

Fletcher, R. (2000). Practical methods of optimization. John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118723203

Garmaise, M. J., & Moskowitz, T. J. (2004). Confronting information asymmetries: Evidence from real estate markets. The Review of Financial Studies, 17(2), 405–437. https://doi.org/10.1093/RFS/HHG037

Gatzlaff, D., & Tirtiroğlu, D. (1995). Real estate market efficiency: Issues and evidence. Journal of Real Estate Literature, 3(2), 157–189. https://doi.org/10.1080/10835547.1995.12090046

Gdakowicz, A., Putek-Szeląg, E., & Kuźmiński, W. (2019). Information asymmetry and mass appraisal. Metody Ilościowe w Badaniach Ekonomicznych, 20(3), 149–166. https://doi.org/10.22630/MIBE.2019.20.3.15

Ho, T. K. (1995). Random decision forests. In Proceedings of the International Conference on Document Analysis and Recognition (Vol. 1, pp. 278–282). IEEE. https://doi.org/10.1109/ICDAR.1995.598994

Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8), 832–844. https://doi.org/10.1109/34.709601

Hong, J., & Kim, W. (2022). Combination of machine learning-based automatic valuation models for residential properties in South Korea. International Journal of Strategic Property Management, 26(5), 362–384. https://doi.org/10.3846/IJSPM.2022.17909

Huber, R., D’Onofrio, C., Devaraju, A., Klump, J., Loescher, H. W., Kindermann, S., Guru, S., Grant, M., Morris, B., Wyborn, L., Evans, B., Goldfarb, D., Genazzio, M. A., Ren, X., Magagna, B., Thiemann, H., & Stocker, M. (2021). Integrating data and analysis technologies within leading environmental research infrastructures: Challenges and approaches. Ecological Informatics, 61, Article 101245. https://doi.org/10.1016/J.ECOINF.2021.101245

Ionascu, E., Mironiuc, M., & Anghel, I. (2019). Transparency of real estate markets: Conceptual and empirical evidence. Audit Financiar, 17(154), 306–326. https://doi.org/10.20869/AUDITF/2019/154/013

Johnson, K. H., Springer, T. H., & Brockman, C. M. (2005). Price effects of non-traditionally broker-marketed properties. The Journal of Real Estate Finance and Economics, 31, 331–343. https://doi.org/10.1007/s11146-005-2793-3

Jung, J., Kim, J., & Jin, C. (2022). Does machine learning prediction dampen the information asymmetry for non-local investors? International Journal of Strategic Property Management, 26(5), 345–361. https://doi.org/10.3846/IJSPM.2022.17590

Keskin, B., & Watkins, C. (2017). Defining spatial housing submarkets: Exploring the case for expert delineated boundaries. Urban Studies, 54(6), 1446–1462. https://doi.org/10.1177/0042098015620351

Klein, T. J., Lambertz, C., & Stahl, K. O. (2016). Market transparency, adverse selection, and moral hazard. Journal of Political Economy, 124(6), 1677–1713. https://doi.org/10.1086/688875

Kurlat, P., & Stroebel, J. (2014). Testing for information asymmetries in real estate markets (Working Paper No. 19875). National Bureau of Economic Research. https://doi.org/10.3386/w19875

Levitt, S. D., & Syverson, C. (2008). Market distortions when agents are better informed: The value of information in real estate transactions. The Review of Economics and Statistics, 90(4), 599–611. https://doi.org/10.1162/rest.90.4.599

Li, L., & Chau, K. W. (2024). Information asymmetry with heterogeneous buyers and sellers in the housing market. Journal of Real Estate Finance and Economics, 68(1), 138–159. https://doi.org/10.1007/s11146-023-09939-y

Ling, D. C., Naranjo, A., & Petrova, M. T. (2018). Search costs, behavioral biases, and information intermediary effects. The Journal of Real Estate Finance and Economics, 57, 114–151. https://doi.org/10.1007/s11146-016-9582-z

Meszek, W., & Dziadosz, A. (2011). Wpływ nieefektywności rynku nieruchomości na dokładność opisu wartości nieruchomości za pomocą liniowych modeli regresji wielorakiej. Budownictwo i Inżynieria Środowiska, 2(4), 589–594.

Morley, S. K., Brito, T. V., & Welling, D. T. (2018). Measures of model performance based on the log accuracy ratio. Space Weather, 16(1), 69–88. https://doi.org/10.1002/2017SW001669

Murphy, A. H. (1993). What is a good forecast? An essay on the nature of goodness in weather forecasting. Weather and Forecasting, 8(2), 281–293. 2.0.CO;2> https://doi.org/10.1175/1520-0434(1993)008<0281:WIAGFA>2.0.CO;2

Ogryzek, M. (2023). The sustainable development paradigm. Geomatics and Environmental Engineering, 17(1), 5–18. https://doi.org/10.7494/geom.2023.17.1.5

Ragil Budi Perkasa, A., Utomo, C., & Budi Santoso, E. (2023). A review of research methods on highest and best use for toll rest area. Materials Today: Proceedings, 85, 19–23. https://doi.org/10.1016/j.matpr.2023.05.247

Renigier-Bilozor, M., Janowski, A., & Walacik, M. (2019). Geoscience methods in real estate market analyses subjectivity decrease. Geosciences, 9(3), Article 130. https://doi.org/10.3390/geosciences9030130

Renigier-Biłozor, M., Janowski, A., Walacik, M., & Chmielewska, A. (2022). Modern challenges of property market analysis-homogeneous areas determination. Land Use Policy, 119, Article 106209. https://doi.org/10.1016/j.landusepol.2022.106209

Ribera, F., Nesticò, A., Cucco, P., & Maselli, G. (2020). A multicriteria approach to identify the highest and best use for historical buildings. Journal of Cultural Heritage, 41, 166–177. https://doi.org/10.1016/j.culher.2019.06.004

Ries, A., & Trout, J. (1994). The 22 immutable laws of marketing: Violate them at your own risk! https://archive.org/details/22immutablelawso00alri/page/n1/mode/2up

Royal Institution of Chartered Surveyors. (2022). Automated valuation models (AVMs): Implications for the profession and their clients. Royal Institution of Chartered Surveyors (RICS).

Rymarzak, M., Siemińska, E., & Sakierski, K. (2022). Reflecting sustainability in the analysis of highest and best use: Evidence from Polish municipalities. Real Estate Management and Valuation, 30(4), 103–115. https://doi.org/10.2478/remav-2022-0032

Sayce, S., & Connellan, O. (2002). From existing use to value in use: Time for a paradigm shift? Property Management, 20(4), 228–251. https://doi.org/10.1108/02637470210444268

Sayce, S., Smith, J., Cooper, R., & Venmore-Rowland, P. (2006). Real estate appraisal: From value to worth. Wiley-Blackwell.

Schulze, F., & Windhorst, E. (2014). Mies van der Rohe: A critical biography. The University of Chicago Press.

Tisdell, C. (1970). On the theory of externalities. Economic Record, 46(1), 14–25. https://doi.org/10.1111/j.1475-4932.1970.tb02462.x

Trinh, T. H. (2018). Towards a paradigm on the value. Cogent Economics & Finance, 6(1), Article 1429094. https://doi.org/10.1080/23322039.2018.1429094

Utomo, C., Rahmawati, Y., & Krestawan, I. (2018). Development of urban market spatial for highest and best use of land productivity and sustainability. Planning Malaysia, 16(1), 163–172. https://doi.org/10.21837/PM.V16I5.420

Vandell, K. D. (1982). Toward analytically precise definitions of market value and highest and best use. Appraisal Journal, 50(2), 253–268.

Vandell, K. D., & Carter, C. C. (2000). Graaskamp’s concept of highest and best use. In J. R. DeLisle & E. M. Worzala (Eds.), Essays in honor of James A. Graaskamp: Ten years after (pp. 307–319). Springer. https://doi.org/10.1007/978-1-4615-1703-0_15

Walacik, M., & Chmielewska, A. (2024a). Energy performance in residential buildings as a property market efficiency driver. Energies, 17(10), Article 2310. https://doi.org/10.3390/EN17102310

Walacik, M., & Chmielewska, A. (2024b). Real estate industry sustainable solution (environmental, social, and governance) significance Assessment-AI-Powered algorithm implementation. Sustainability, 16, Article 1079. https://doi.org/10.3390/SU16031079

Walacik, M., & Janowski, A. (2024). The original methodology for homogeneous area determination (HAD) for the purpose of property taxation procedures’ fairness and equity increase [Unpublished presentation form GIS/Valuation Technologies Conference 2024].

Wang, F., Gai, Y., & Zhang, H. (2024). Blockchain user digital identity big data and information security process protection based on network trust. Journal of King Saud University – Computer and Information Sciences, 36(4), Article 102031. https://doi.org/10.1016/j.jksuci.2024.102031

Watkins, C. (1999). Property valuation and the structure of urban housing markets. Journal of Property Investment & Finance, 17(2), 157–175. https://doi.org/10.1108/14635789910258543

Watkins, C. (2001). The definition and identification of housing submarkets. Environment and Planning A: Economy and Space, 33(12), 2235–2253. https://doi.org/10.1068/a34162

Wong, S. K., Yiu, C. Y., & Chau, K. W. (2012). Liquidity and information asymmetry in the real estate market. The Journal of Real Estate Finance and Economics, 45, 49–62. https://doi.org/10.1007/s11146-011-9326-z

Zhou, X., Gibler, K., & Zahirovic-Herbert, V. (2015). Asymmetric buyer information influence on price in a homogeneous housing market. Urban Studies, 52(5), 891–905. https://doi.org/10.1177/0042098014529464