Share:


Artificial intelligence in business and economics research: trends and future

Abstract

Artificial Intelligence is a disruptive technology developed during the 20th century, which has undergone an accelerated evolution, underpinning solutions to complex problems in the business world. Neural Networks, Machine Learning, or Deep Learning are concepts currently associated with terms such as digital marketing, decision making, industry 4.0 and business digital transformation.  Interest in this technology will increase as the competitive advantages of the use of Artificial Intelligence by economic entities is realised. The aim of this research is to analyse the state-of-the-art research of Artificial Intelligence in business. To this end, a bibliometric analysis has been implement using the Web of Science and Scopus online databases. By using a fractional counting method, this paper identifies 11 clusters and the most frequent terms used in Artificial Intelligence research. The present study identifies the main trends in research on Artificial Intelligence in business and proposes future lines of inquiry.


First published online 29 October 2020

Keyword : artificial intelligence, business, economics, bibliometrics, research trends, decision-making

How to Cite
Ruiz-Real, J. L., Uribe-Toril, J., Torres, J. A., & De Pablo, J. (2021). Artificial intelligence in business and economics research: trends and future. Journal of Business Economics and Management, 22(1), 98-117. https://doi.org/10.3846/jbem.2020.13641
Published in Issue
Jan 27, 2021
Abstract Views
21671
PDF Downloads
13987
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Altman, E. I., Marco, G., & Varetto, F. (1994). Corporate distress diagnosis: Comparisons using linear discriminant analysis and neural networks (the Italian experience). Journal of Banking and Finance, 18(3), 505–529. https://doi.org/10.1016/0378-4266(94)90007-8

Bakkalbasi, N., Bauer, K., Glover, J., & Wang, L. (2006). Three options for citation tracking: Google Scholar, Scopus and Web of Science. BMC Biomedical Digital Libraries, 3(7), 1–8. https://doi.org/10.1186/1742-5581-3-7

Burkhalter, B. (1963). Applying artificial-intelligence to pattern-cutters problem. Operations Research, 11, 39.

Callan, J. P., Croft, W. B., & Harding, S. M. (1992). The INQUERY retrieval system. In Database and expert systems applications (pp. 78–83). Springer Vienna. https://doi.org/10.1007/978-3-7091-7557-6_14

Cavalcante, R., Brasileiro, R. C., Souza, V. L. F., Nobrega, J. P., & Oliveira, A. L. I. (2016). Computational intelligence and financial markets: A survey and future directions. Expert Systems with Applications, 55, 194–211. https://doi.org/10.1016/j.eswa.2016.02.006

Chadegani, A. A., Salehi, H., Yunus, M., Farhadi, H., Fooladi, M., Farhadi, M., & Ale Ebrahim, N. (2013). A comparison between two main academic literature collections: Web of Science and Scopus databases. Asian Social Science, 9(5), 18–26. https://doi.org/10.5539/ass.v9n5p18

Chan, F. T. S., Jiang, B., & Tang N. K. H. (2000). Development of intelligent decision support tools to aid the design of flexible manufacturing systems. International Journal of Production Economics, 65(1), 73–84. https://doi.org/10.1016/S0925-5273(99)00091-2

Cho, V. (2003). A comparison of three different approaches to tourist arrival forecasting. Tourism Management, 24(3), 323–330. https://doi.org/10.1016/S0261-5177(02)00068-7

Choi, J. J., & Ozkan, B. (2019). Innovation and disruption: Industry practices and conceptual bases. In J. J. Choi & B. Ozkan (Eds.), Disruptive innovation in business and finance in the digital world (Vol. 20, pp. 3–13). Emerald Publishing Limited. https://doi.org/10.1108/S1569-376720190000020003

Chopra, K. (2019). Indian shopper motivation to use artificial intelligence: Generating Vroom’s expectancy theory of motivation using grounded theory approach. International Journal of Retail & Distribution Management, 47(3), 331–347. https://doi.org/10.1108/IJRDM-11-2018-0251

Choy, K. L., Lee, W. B., Lau, H. C. W., & Choy, L. C. (2005). A knowledge-based supplier intelligence retrieval system for outsource manufacturing. Knowledge-Based Systems, 18(1), 1–17. https://doi.org/10.1016/j.knosys.2004.05.003

Daim, T. U., Rueda, G., Martin, H., & Gerdsri, P. (2006). Forecasting emerging technologies: Use of bibliometrics and patent analysis. Technological Forecasting and Social Change, 73(8), 981–1012. https://doi.org/10.1016/j.techfore.2006.04.004

Das, S. R., & Chen, M. Y. (2007). Yahoo! for amazon: Sentiment extraction from small talk on the Web. Management Science, 53(9), 1375–1388. https://doi.org/10.1287/mnsc.1070.0704

Dermirkan, H., & Delen, D. (2013). Leveraging the capabilities of service-oriented decision support systems: Putting analytics and big data in cloud. Decision Support Systems 55(1), 412–421. https://doi.org/10.1016/j.dss.2012.05.048

Fedra, K. (1994). Models, GIS, and expert systems: integrated water resources models. In K. Kovar & H. P. Nachtnebel (Eds.), Applications of geographic information systems in hydrology and water resources management (pp. 297–308). IAHS.

Furner, J. (2014). The ethics of evaluative bibliometrics. In B. Cronin, & C. Sugimoto (Eds.), Beyond bibliometrics: Harnessing multidimensional indicators of scholarly impact (pp. 85–107). MIT Press.

Garfield, E. (1955). Citation index for science. A new dimension in documentation through association of ideas. Science, 122(3159), 108–111. https://doi.org/10.1126/science.122.3159.108

Goodman, D., & Deis, L. (2005). Web of Science (2004 version) and Scopus. The Charleston Advisor, 6(3), 5–21.

Guz, A. N., & Rushchitsky, J. J. (2009). Scopus: A system for the evaluation of scientific journals. International Applied Mechanics, 45(4), 351–362. https://doi.org/10.1007/s10778-009-0189-4

Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National academy of Sciences, 102(46), 16569–16572. https://doi.org/10.1073/pnas.0507655102

Huang, Z., Chen, H., Hsu, C.-J., Chen, W.-H., & Wu, S. (2004). Credit rating analysis with support vector machines and neural networks: A market comparative study. Decision Support Systems, 37(4), 543–558. https://doi.org/10.1016/S0167-9236(03)00086-1

Ince, H., & Aktan, B. (2009). A comparison of data mining techniques for credit scoring in banking: A managerial perspective. Journal of Business Economics and Management, 10(3), 233–240. https://doi.org/10.3846/1611-1699.2009.10.233-240

Jan, M. N., & Ayub, U. (2019). Do the Fama and French five-factor model forecast well using ANN? Journal of Business Economics and Management, 20(1), 168–191. https://doi.org/10.3846/jbem.2019.8250

Karimova, F. (2016). A survey of e-commerce recommender systems. European Scientific Journal, 12(34), 75–89. https://doi.org/10.19044/esj.2016.v12n34p75

Kozma, R. B., & Russell, J. (1997). Multimedia and understanding: Expert and novice responses to different representations of chemical phenomena. Journal of Research in Science Teaching, 34(9), 949–968. https://doi.org/10.1002/(SICI)1098-2736(199711)34:9<949::AID-TEA7>3.0.CO;2-U

Kusiak, A., & Chen, M. (1988). Expert systems for planning and scheduling manufacturing systems. European Journal of Operational Research, 34(2), 113–130. https://doi.org/10.1016/0377-2217(88)90346-3

Lebailly, L., Martin-Clouaire, R., & Prade, A. (1987). Use of fuzzy logic in a rule-based system in petrolium geology. In Approximate reasoning on Intelligent Systems, Decision and Control (pp. 125–144). https://doi.org/10.1016/B978-0-08-034335-8.50015-5

LeBaron, B., Arthur, W. B., & Palmer, R. (1999). Time series properties of an artificial stock market. Journal of Economic Dynamics and Control, 23(9–10), 1487–1516. https://doi.org/10.1016/S0165-1889(98)00081-5

Lee, L. W., Dabirian, A., McCarthy, I. P., & Kietzmann, J. (2020). Making sense of text: Artificial intelligence-enabled content analysis. European Journal of Marketing, 54(3), 615–644. https://doi.org/10.1108/EJM-02-2019-0219

Lee, Y. K., & Park, D. W. (2018). Design of internet of things business model with deep learning artificial intelligence. International Journal of Grid and Distributed Computing, 11(7), 11–22. https://doi.org/10.14257/ijgdc.2018.11.7.02

Li, B., Hou, B., Yu, W., Lu, X., & Yang, C. (2017). Applications of artificial intelligence in intelligent manufacturing: A review. Frontiers of Information Technology & Electronic Engineering, 18(1), 86– 96. https://doi.org/10.1631/FITEE.1601885

Luo, H., Du, B., Huang, G. Q., Chen, H., & Li, X. (2013). Hybrid flow shop scheduling considering machine electricity consumption cost. International Journal of Production Economics, 146(2), 423–439. https://doi.org/10.1016/j.ijpe.2013.01.028

Maknickiene, N., & Maknickas, A. (2013). Financial market prediction system with Evolino neural network and Delphi method. Journal of Business Economics and Management, 14(2), 403–413. https://doi.org/10.3846/16111699.2012.729532

Marinchak, C. L. M., Forrest, E., & Hoanca, B. (2018). The impact of artificial intelligence and virtual personal assistants on marketing. In D. B. A. M. Khosrow-Pour (Ed.), Encyclopedia of information science and technology (4th ed., pp. 5748–5756). IGI Global. https://doi.org/10.4018/978-1-5225-2255-3.ch499

McCarthy, J. (1960). Programs with common sense (pp. 300–307). RLE and MIT Computation Center.

Miles, R. E., & Snow, C. C. (1986). Organizations: New concepts for new forms. California Management Review, 28(3), 62–73. https://doi.org/10.2307/41165202

MIT Sloan Management Review. (2017). Reshaping business with artificial intelligence. Closing the gap between ambition and action. https://sloanreview.mit.edu/projects/reshaping-business-with-artificial-intelligence/

Moed, H. F. (2005). Citation analysis in research evaluation. Springer, Dordrecht.

Morikawa, M. (2016). The effects of artificial intelligence and robotics on business and employment: Evidence from a survey on Japanese firms. Research Institute of Economy, Trade and Industry (RIETI).

Mutasa, S., Sun, S., & Ha, R. (2020). Understanding artificial intelligence based radiology studies: What is overfitting? Clinical Imaging, 65, 96–99. https://doi.org/10.1016/j.clinimag.2020.04.025

Mylopoulos, J., Borgida, A., Jarke, M., & Koubarakis, M. (1990). Telos: Representing knowledge about information systems. ACM Transactions on Information Systems, 8(4), 325–362. https://doi.org/10.1145/102675.102676

Nicholson, J. K., Lindon, J. C., & Holmes, E. (1999). “Metabonomics”: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 29(11), 1181–1189. https://doi.org/10.1080/004982599238047

Patel, V. L., Shortliffe, E. H., Stefanelli, M., Szolovits, P., Berthold, M. R., Bellazzi, R., & Abu-Hanna, A. (2009). The coming of age of artificial intelligence in medicine. Artificial Intelligence in Medicine, 46(1), 5–17. https://doi.org/10.1016/j.artmed.2008.07.017

Plastino, E., & Purdy, M. (2018). Game changing value from artificial intelligence: Eight strategies. Strategy & Leadership, 46(1), 16–22. https://doi.org/10.1108/SL-11-2017-0106

Ramakrishna, S., Ngowi, A., De Jager, H., & Awuzie, B. O. (2020). Emerging industrial revolution: Symbiosis of Industry 4.0 and circular economy: The role of universities. Science Technology and Society, 25(3), 505–525. https://doi.org/10.1177/0971721820912918

Rampersad, G. (2020). Robot will take your job: Innovation for an era of artificial intelligence. Journal of Business Research, 116, 68–74. https://doi.org/10.1016/j.jbusres.2020.05.019

Rozinat, A., & Van der Aalst, W. M. P. (2008). Conformance checking of processes based on monitoring real behaviour. Information Systems, 33(1), 64–95. https://doi.org/10.1016/j.is.2007.07.001

Sabherwal, R., & Chan, Y. E. (2001). Alignment between business and IS strategies: A study of prospectors, analyzers, and defenders. Information System Research, 12(1), 11–33. https://doi.org/10.1287/isre.12.1.11.9714

Sheta, F. A., Ahmed, S. E. M., & Faris, H. (2015). A comparison between regression, artificial neural networks and support vector machines for predicting stock market index. International Journal of Advanced Research in Artificial Intelligence, 4(7). https://doi.org/10.14569/IJARAI.2015.040710

Shravan Kumar, B., & Ravi, V. (2016). A survey of the applications of text mining in financial domain. Knowledge-Based Systems, 114, 128–147. https://doi.org/10.1016/j.knosys.2016.10.003

Shwartz, I. S., Richard, E., Gregory, S., Haven, N., & Donald, P. (1993). Database retrieval system having a natural language interface. Google Patents. https://patents.google.com/patent/US5197005A/en

Soltani-Fesaghandis, G., & Pooya, A. (2018). Design of an artificial intelligence system for predicting success of new product development and selecting proper market-product strategy in the food industry. International Food and Agribusiness Management Review, 21(7), 847–864. https://doi.org/10.22434/IFAMR2017.0033

Stalidis, G., Karapistolis, D., & Vafeiadis, A. (2015). Marketing decision support using artificial intelligence and knowledge modeling: Application to tourist destination management. Procedia – Social and Behavioral Sciences, 175, 106–113. https://doi.org/10.1016/j.sbspro.2015.01.1180

Sun, Z.-L., Choi, T.-M., Au, K.-F., & Yu, Y. (2008). Sales forecasting using extreme learning machine with applications in fashion retailing. Decision Support Systems, 46(1), 411–419. https://doi.org/10.1016/j.dss.2008.07.009

Swaminathan, J. M., Smith, S. F., & Sadeh, N. M. (1998). Modeling supply chain dynamics: A multiagent approach. Decision Sciences, 29(3), 607–631. https://doi.org/10.1111/j.1540-5915.1998.tb01356.x

Tague-Sutcliffe, J. (1992). An introduction to informetrics. Information Processing & Management, 28(1), 1–3. https://doi.org/10.1016/0306-4573(92)90087-G

Tam, K. Y., & Kiang, M. Y. (1992). Managerial applications of neural networks: The case of bank failure prediction. Management Science, 38(7), 926–947. https://doi.org/10.1287/mnsc.38.7.926

Traag, V. A., Van Dooren, P., & Nesterov, Y. (2011). Narrow scope for resolution-limit-free community detection. Physical Review E, 84(1), 016114. https://doi.org/10.1103/PhysRevE.84.016114

Trafalis, T., & Ince, H. (2000). Support vector machine for regression and applications to financial forecasting. In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium (vol. 6, pp. 348–353). https://doi.org/10.1109/IJCNN.2000.859420

Van Assen, M., Lee, S. J., & De Cecco, C. N. (2020). Artificial intelligence from A to Z: From neural network to legal framework. European Journal of Radiology, 129, 109083. https://doi.org/10.1016/j.ejrad.2020.109083

Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84, 523–538. https://doi.org/10.1007/s11192-009-0146-3

Van Eck, N. J., & Waltman, L. (2015), “VOSviewer manual”, Manual for VOSviewer Version 1.6.1. Universiteit Leiden.

Van Eck, N. J., & Waltman, L. (2017). Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics, 111(2), 1053–1070. https://doi.org/10.1007/s11192-017-2300-7

Van Raan, A. F. (2014). Advances in bibliometric analysis: Research performance assessment and science mapping. In W. Blockmans, L. Engwall, & D. Weaire, Bibliometrics. Use and abuse in the review of research performance (pp. 17–28). Portland Press Ltd. https://portlandpress.com/DocumentLibrary/Umbrella/Wenner%20Gren/Vol%2087/WG_87_chapter%203.pdf

Waaijer, C. J., Van Bochove, C. A., & van Eck, N. J. (2011). On the map: Nature and science editorials. Scientometrics, 86(1), 99–112. https://doi.org/10.1007/s11192-010-0205-9

Wagner, C. (2006). Breaking the knowledge acquisition bottleneck through conversational knowledge management. Information Resources Management Journal, 19(1), 70–83. https://doi.org/10.4018/irmj.2006010104

Waltman, L., & Van Eck, N. J. (2012). A new methodology for constructing a publication-level classification system of science. Journal of the American Society for Information Science and Technology, 63(12), 2378–2392. https://doi.org/10.1002/asi.22748

Wei-Yang, L., Ya-Han, H., & Chih-Fong, T. (2012). Machine learning in financial crisis prediction: A survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(4), 421–436. https://doi.org/10.1109/TSMCC.2011.2170420

Weng, B., Martínez, W., Tsai, Y. T., Li, C., Lu, L., Barth, J. R., & Megahed, F. M. (2018). Macroeconomic indicators alone can predict the monthly closing price of major US indices: Insights from artificial intelligence, time-series analysis and hybrid models. Applied Soft Computing, 71, 685–697. https://doi.org/10.1016/j.asoc.2018.07.024

West, J., & Bhattacharya, M. (2016). Intelligent financial fraud detection. Computers & Security, 57, 47–66. https://doi.org/10.1016/j.cose.2015.09.005

Wilson, R. L., & Sharda, R. (1994). Bankruptcy prediction using neural networks. Decision Support Systems, 11(5), 545–557. https://doi.org/10.1016/0167-9236(94)90024-8

Wirth, N. (2018). Hello marketing, what can artificial intelligence help you with? International Journal of Market Research, 60(5), 435–438. https://doi.org/10.1177/1470785318776841

Wong, K. K. L., Fortino, G., & Abbott, D. (2020). Deep learning-based cardiovascular image diagnosis: A promising challenge. Future Generation Computer Systems, 110, 802–811. https://doi.org/10.1016/j.future.2019.09.047

Xing, F. Z., Cambria, E., & Welsch, R. E. (2018). Natural language based financial forecasting: A survey. Artificial Intelligence Review, 50(1), 49–73. https://doi.org/10.1007/s10462-017-9588-9

Yu, Q., Miche, Y., Séverin, E., & Lendasse, A. (2014). Bankruptcy prediction using Extreme Learning Machine and financial expertise. Neurocomputing, 128, 296–302. https://doi.org/10.1016/j.neucom.2013.01.063

Zatorski, R. J. (1970). Picture-language interaction in the artificial intelligence. Australian Computer Journal, 2(4), 173–179.