Review of the design and condition monitoring of overhead power distribution conductors
Abstract
Bushfires, also known as wildfires in some parts of the world, is a major hazard with significant risks to communities and the environment. Such fires can initiate from a number of sources including lightning. However, one of the possibilities for initiating bushfires is faults in the power system. Faults in conductors can happen overtime and monitoring is essential for effective maintenance and avoiding unnecessary power failures. Simultaneously, assessing conductor reliability is critical for powerline asset management. This paper comprehensively reviews conductor design and monitoring in the distribution network. Various conductor types and applications are described using population statistics from the Australian power distribution network. Furthermore, the design approach in the Australian Standard is briefly explained and further design methodologies are assessed, emphasizing the progress of innovative approaches. Additionally, potential conductor failure modes in Australia’s distribution network are identified. The paper also outlines different condition assessment methods and explores their advancement. Finally, possible models for evaluating conductor reliability are examined, underscoring their benefits in accounting for weather-induced impacts.
Keyword : wind load, design aspects, deterioration, failure identification, reliability, current practice

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Aboshosha, H. (2014). Response of transmission line conductors under downburst wind [PhD thesis]. The University of Western Ontario, Canada. https://doi.org/10.3850/978-981-07-8012-8_P11
Aboshosha, H., & El Damatty, A. (2012). Capacity of electrical transmission towers under downburst loading. In The First Australasia and South-East Asia Structural Engineering and Construction Conference, Perth, WA, Australia.
Aboshosha, H., Bitsuamlak, G., & El Damatty, A. (2015). Turbulence characterization of downbursts using LES. Journal of Wind Engineering and Industrial Aerodynamics, 136, 44–61. https://doi.org/10.1016/j.jweia.2014.10.020
Aggarwal, R., Johns, A., Jayasinghe, J., & Su, W. (2000). An overview of the condition monitoring of overhead lines. Electric Power Systems Research, 53(1), 15–22. https://doi.org/10.1016/S0378-7796(99)00037-1
Ahmed, N., & Srinivas, N. (1998). On-line partial discharge detection in cables. IEEE Transactions on Dielectrics and Electrical Insulation, 5(2), 181–188. https://doi.org/10.1109/94.671927
Alawar, A., Bosze, E. J., & Nutt, S. R. (2005). A composite core conductor for low sag at high temperatures. IEEE Transactions on Power Delivery, 20(3), 2193–2199. https://doi.org/10.1109/TPWRD.2005.848736
Albizu, I., Mazon, A., & Fernandez, E. (2011). A method for the sag-tension calculation in electrical overhead lines. International Review of Electrical Engineering, 6(3), 1380–1389.
Allan, R. N. (2013). Reliability evaluation of power systems. Springer Science & Business Media.
Allan, R., & Billinton, R. (1988). Concepts of power system reliability evaluation. International Journal of Electrical Power & Energy Systems, 10(3), 139–141. https://doi.org/10.1016/0142-0615(88)90028-2
Alstad, K., Refsnaes, S., Bovre, T., & Thomassen, H. (1993). A new overhead line concept based on covered conductors. In 12th International Conference on Electricity Distribution (CIRED) (Vol. 3, pp. 3.7/1–3.7/5), Birmingham, UK. IEEE.
Aracil, R., Ferre, M., Hernando, M., Pinto, E., & Sebastian, J. (2002). Telerobotic system for live-power line maintenance: ROBTET. Control Engineering Practice, 10(11), 1271–1281. https://doi.org/10.1016/S0967-0661(02)00182-X
Australian Energy Regulator. (2022). State of the energy market 2022.
Awadallah, S. K. E. (2014). Probabilistic methodology for prioritising replacement of ageing power transformers based on reliability assessment of transmission system [PhD thesis]. The University of Manchester, UK.
Bandara, S., Rajeev, P., & Gad, E. (2023). Power distribution system faults and wildfires: Mechanisms and prevention. Forests, 14(6), Article 1146. https://doi.org/10.3390/f14061146
Bandara, S., Rajeev, P., & Gad, E. (2024). A review on condition assessment technologies for power distribution network infrastructure. Structure and Infrastructure Engineering, 20(11), 1835–1851. https://doi.org/10.1080/15732479.2023.2177680
Bartoli, G., Cluni, F., Gusella, V., & Procino, L. (2006). Dynamics of cable under wind action: Wind tunnel experimental analysis. Journal of Wind Engineering and Industrial Aerodynamics, 94(5), 259–273. https://doi.org/10.1016/j.jweia.2006.01.002
Bedi, G., Venayagamoorthy, G. K., Singh, R., Brooks, R. R., & Wang, K.-C. (2018). Review of Internet of Things (IoT) in electric power and energy systems. IEEE Internet of Things Journal, 5(2), 847–870. https://doi.org/10.1109/JIOT.2018.2802704
Bellemare, J., Hassanipour, M., Godin, S., Rousseau, G., & Pouliot, N. (2023). Validation through field data of LineCore, a lightweight Eddy-current sensor for the early detection of corrosion of ACSRs. In Proceedings of the 13th European Conference on Non-Destructive Testing (ECNDT 2023), Lisbon, Portugal. https://doi.org/10.58286/28196
Bhuiyan, M. M. I., Musilek, P., Heckenbergerova, J., & Koval, D. (2010). Evaluating thermal aging characteristics of electric power transmission lines. In CCECE 2010, Calgary, AB, Canada. https://doi.org/10.1109/CCECE.2010.5575137
Billinton, R., & Allan, R. N. (1984). Power-system reliability in perspective. Electronics and Power, 30(3), 231–236. https://doi.org/10.1049/ep.1984.0118
Billinton, R., & Allan, R. N. (1992). Reliability evaluation of engineering systems (2nd ed.). Springer. https://doi.org/10.1007/978-1-4899-0685-4
Billinton, R., & Wenyuan, L. (1991). Hybrid approach for reliability evaluation of composite generation and transmission systems using Monte-Carlo simulation and enumeration technique. IEE Proceedings C (Generation, Transmission and Distribution), 138(3). https://doi.org/10.1049/ip-c.1991.0029
Biswal, G. R., Maheshwari, R. P., & Dewal, M. (2011). Modeling, control, and monitoring of S3RS-based hydrogen cooling system in thermal power plant. IEEE Transactions on Industrial Electronics, 59(1), 562–570. https://doi.org/10.1109/TIE.2011.2134059
Blazquez, C. H. (1994). Detection of problems in high-power voltage transmission and distribution lines with an infrared scanner/video system. In Proceedings of Thermosense XVI: An International Conference on Thermal Sensing and Imaging Diagnostic Applications (Vol. 2245), Orlando, FL, USA. https://doi.org/10.1117/12.171186
Brettschneider, S., Lemke, E., Hinkle, J., & Schneider, M. (2002). Recent field experience in PD assessment of power cables using oscillating voltage waveforms. In Conference Record of the the 2002 IEEE International Symposium on Electrical Insulation (Cat. No. 02CH37316) (pp. 546–552), Boston, MA, USA. IEEE. https://doi.org/10.1109/ELINSL.2002.995995
Brika, D., & Laneville, A. (1996). A laboratory investigation of the aeolian power imparted to a conductor using a flexible circular cylinder. IEEE Transactions on Power Delivery, 11(2), 1145–1152. https://doi.org/10.1109/61.489379
Büchler, M. (2020). On the mechanism of cathodic protection and its implications on criteria including AC and DC interference conditions. Corrosion, 76(5), 451–463. https://doi.org/10.5006/3379
Chabart, O., & Lilien, J.-L. (1998). Galloping of electrical lines in wind tunnel facilities. Journal of Wind Engineering and Industrial Aerodynamics, 74, 967–976. https://doi.org/10.1016/S0167-6105(98)00088-9
Cimini Jr., C. A., & Fonseca, B. Q. A. (2013). Temperature profile of progressive damaged overhead electrical conductors. International Journal of Electrical Power & Energy Systems, 49, 280–286. https://doi.org/10.1016/j.ijepes.2012.12.015
Daminov, I., Prokhorov, A., Caire, R., & Alvarez-Herault, M.-C. (2021). Assessment of dynamic transformer rating, considering current and temperature limitations. International Journal of Electrical Power & Energy Systems, 129, Article 106886. https://doi.org/10.1016/j.ijepes.2021.106886
Dempsey, D., & White, H. (1996). Winds wreak havoc on lines. Transmission and Distribution World, 48(6), 32–37.
Dhaou, I. B. (2023). Design and implementation of an internet-of-things-enabled smart meter and smart plug for home-energy-management system. Electronics, 12(19), Article 4041. https://doi.org/10.3390/electronics12194041
Dong, B., Jiang, X., & Yin, F. (2022). Development and prospect of monitoring and prevention methods of icing disaster in China power grid. IET Generation, Transmission & Distribution, 16(22), 4480–4493. https://doi.org/10.1049/gtd2.12614
Electric Power Research Institute (2006). Field guide for visual inspection of polymer insulators.
Eso, M., Gururaja, P., & McNeil, R. (2021). Statistical modelling of 3-hourly wind patterns in Melbourne, Australia. Nature Environment and Pollution Technology, 20(2), 665–673. https://doi.org/10.46488/NEPT.2021.v20i02.025
Evoenergy. (2020). Overhead line sistribution design manual. https://www.evoenergy.com.au/-/media/evoenergy/documents/manuals/po07132-overhead-line-distribution-design-manual.pdf?la=en&hash=90F5E14B09095BB822D73565D53A7F77A3B8D852
Fadel, A. A., Rosa, D., Murça, L., Fereira, J., & Araújo, J. (2012). Effect of high mean tensile stress on the fretting fatigue life of an Ibis steel reinforced aluminium conductor. International Journal of Fatigue, 42, 24–34. https://doi.org/10.1016/j.ijfatigue.2011.03.007
Farquharson, F. B., & McHugh, R. E. (1956). Wind tunnel investigation of conductor vibration with use of rigid models [includes discussion]. Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems, 75(3), 871–878. https://doi.org/10.1109/AIEEPAS.1956.4499379
Farzaneh, M., & Savadjiev, K. (2006). Evaluation of tensile strength of ACSR conductors based on test data for individual strands. IEEE Transactions on Power Delivery, 22(1), 627–633. https://doi.org/10.1109/TPWRD.2006.881466
Farzaneh, M., & Chisholm, W. A. (2022). Techniques for protecting overhead lines in winter conditions: Dimensioning, icephobic surfaces, de-icing strategies. Springer. https://doi.org/10.1007/978-3-030-87455-1
Fekr, M. R., & McClure, G. (1998). Numerical modelling of the dynamic response of ice-shedding on electrical transmission lines. Atmospheric Research, 46(1–2), 1–11. https://doi.org/10.1016/S0169-8095(97)00046-X
Finotto, V., Horikawa, O., Hirakawa, A., & Chamas Filho, A. (2012). Pole type robot for distribution power line inspection. In 2012 2nd International Conference on Applied Robotics for the Power Industry (CARPI) (pp. 88–93), Zurich, Switzerland. IEEE. https://doi.org/10.1109/CARPI.2012.6473360
Flaga, A., Pistol, A., Krajewski, P., & Flaga, Ł. (2020). Aerodynamic and aeroelastic wind tunnel model tests of overhead power lines in triangular configuration under different icing conditions. Cold Regions Science and Technology, 170, Article 102919. https://doi.org/10.1016/j.coldregions.2019.102919
Florea, G. A., Gal, S., Mateescu, E., Tulici, N., & Pastrama, S. (2005). Romanian approach of ACSR overhead line conductor end of life using live line tehniques to get samples for testing. In CIRED 2005 – 18th International Conference and Exhibition on Electricity Distribution, Turin, Italy. https://doi.org/10.1049/cp:20050980
Frigerio, M., Buehlmann, P., Buchheim, J., Holdsworth, S. R., Dinser, S., Franck, C. M., Papailiou, K., & Mazza, E. (2016). Analysis of the tensile response of a stranded conductor using a 3D finite element model. International Journal of Mechanical Sciences, 106, 176–183. https://doi.org/10.1016/j.ijmecsci.2015.12.015
Fu, X., Li, H. N., & Wang, J. (2019). Failure analysis of a transmission tower subjected to combined wind and rainfall excitations. The Structural Design of Tall and Special Buildings, 28(10), Article e1615. https://doi.org/10.1002/tal.1615
Golightly, I., & Jones, D. (2005). Visual control of an unmanned aerial vehicle for power line inspection. In Proceedings of 12th International Conference on Advanced Robotics (ICAR’05) (pp. 288–295), Seattle, WA, USA. IEEE. https://doi.org/10.1109/ICAR.2005.1507426
Gómez, F. A., De María, J. G., Puertas, D. G., Baïri, A., & Arrabé, R. G. (2011). Numerical study of the thermal behaviour of bare overhead conductors in electrical power lines. In ACELAE’11: Proceedings of the 10th WSEAS International Conference on Communications, Electrical & Computer Engineering, and 9th WSEAS International Conference on Applied Electromagnetics, Wireless and Optical Communications (pp. 149–153).
Guerard, S. (2011). Power line conductors, a contribution to the analysis of their dynamic behaviour [PhD thesis]. Universite de Liege, Belgium.
Gulski, E., Smit, J. J., Seitz, P. N., Smit, J. C., & Turner, M. (1999). On-site PD diagnostics of power cables using oscillating wave test system. In 1999 Eleventh International Symposium on High Voltage Engineering (Vol. 5, pp. 112–115), London, UK. IEEE. https://doi.org/10.1049/cp:19990898
Gulski, E., Wester, F. J., Smit, J. J., Seitz, P. N., & Turner, M. (2000). Advanced partial discharge diagnostic of MV power cable system using oscillating wave test system. IEEE Electrical Insulation Magazine, 16(2), 17–25. https://doi.org/10.1109/57.833657
Gulski, E., Smit, J. J., & Wester, F. J. (2005). PD knowledge rules for insulation condition assessment of distribution power cables. IEEE Transactions on Dielectrics and Electrical Insulation, 12(2), 223–239. https://doi.org/10.1109/TDEI.2005.1430393
Gulski, E., Smit, J., Seitz, P., Quak, B., Petzold, F., & de Vries, F. (2007). Novel solutions in on-site diagnosis for distribution power cables.
Gulzar, M. A., Kumar, K., Javed, M. A., & Sharif, M. (2018). High-voltage transmission line inspection robot. In 2018 International Conference on Engineering and Emerging Technologies (ICEET), Lahore, Pakistan. IEEE. https://doi.org/10.1109/ICEET1.2018.8338632
Guo, D., Wang, P., Zheng, W., Li, Y., Li, J., Tang, W., Shi, L., & Liu, G. (2021). Investigation of sag behaviour for aluminium conductor steel reinforced considering tensile stress distribution. Royal Society Open Science, 8(8), Article 210049. https://doi.org/10.1098/rsos.210049
Hangan, H., Roberts, D., Xu, Z., & Kim, J. (2003). Downburst simulation. Experimental and numerical challenges. In Proceedings of the 11th International Conference on Wind Engineering, Lubbock, Texas, USA.
Hardy, C., & Van Dyke, P. (1995). Field observations on wind-induced conductor motions. Journal of Fluids and Structures, 9(1), 43–60. https://doi.org/10.1006/jfls.1995.1003
Hathout, I., Callery, K., Trac, J., & Hathout, T. (2018). Impact of thermal stresses on the end of life of overhead transmission conductors. In 2018 IEEE Power & Energy Society General Meeting (PESGM), Portland, OR, USA. IEEE. https://doi.org/10.1109/PESGM.2018.8586574
Havard, D., Bissada, M., Fajardo, C., Horrocks, D., Meale, J., Motlis, J., Tabatabai, M., & Yoshiki-Gravelsins, K. (1992). Aged ACSR conductors. II. Prediction of remaining life. IEEE Transactions on Power Delivery, 7(2), 588–595. https://doi.org/10.1109/61.127053
Jaffrey, N. A., & Hettiwatte, S. (2014). Corrosion detection in steel reinforced aluminium conductor cables. In 2014 Australasian Universities Power Engineering Conference (AUPEC), Perth, WA, Australia. IEEE. https://doi.org/10.1109/AUPEC.2014.6966630
Jakob, D. (2010). Challenges in developing a high-quality surface wind-speed data-set for Australia. Australian Meteorological and Oceanographic Journal, 60(4), 227–236. https://doi.org/10.22499/2.6004.001
Jamaleddine, A., McClure, G., Rousselet, J., & Beauchemin, R. (1993). Simulation of ice-shedding on electrical transmission lines using ADINA. Computers & Structures, 47(4–5), 523–536. https://doi.org/10.1016/0045-7949(93)90339-F
Jazebi, S., De Leon, F., & Nelson, A. (2019). Review of wildfire management techniques – Part I: Causes, prevention, detection, suppression, and data analytics. IEEE Transactions on Power Delivery, 35(1), 430–439. https://doi.org/10.1109/TPWRD.2019.2930055
Jeong, S., Kim, M.-G., Kim, J.-H., & Oh, K.-Y. (2023). Thermal monitoring of live-line power transmission lines with an infrared camera mounted on an unmanned aerial vehicle. Structural Health Monitoring, 22(6), 3707–3722. https://doi.org/10.1177/14759217231156359
Jia, Y., Shang, L., Nan, J., Hu, G., & Fang, Z. (2022). CFD analysis of fluid-dynamic and heat transfer effects generated by a fixed electricity transmission line interacting with an external wind. Fluid Dynamics & Materials Processing, 18(2), 329–344. https://doi.org/10.32604/fdmp.2022.017734
Jiang, K., Bai, Y., & Cheng, P. (2023a). Influence analysis of different compaction degrees on the fatigue performance for stranded copper power conductors. Ships and Offshore Structures, 18(11), 1547–1558. https://doi.org/10.1080/17445302.2022.2129912
Jiang, Y., Xu, Z., Fang, D., Zhang, G., Zhi, B., & Wang, B. (2023b). Power line partial discharge detection using multi-scale 1D convolutional neural networks. In 2023 5th International Conference on Power and Energy Technology (ICPET 2023), Tianjin, China. https://doi.org/10.1109/ICPET59380.2023.10367494
Kalombo, R., Martínez, J., Ferreira, J., Da Silva, C., & Araújo, J. (2015). Comparative fatigue resistance of overhead conductors made of aluminium and aluminium alloy: Tests and analysis. Procedia Engineering, 133, 223–232. https://doi.org/10.1016/j.proeng.2015.12.662
Kalombo, R., Araújo, J., Ferreira, J., Da Silva, C., Alencar, R., & Capra, A. (2016). Assessment of the fatigue failure of an All Aluminium Alloy Cable (AAAC) for a 230 kV transmission line in the Center-West of Brazil. Engineering Failure Analysis, 61, 77–87. https://doi.org/10.1016/j.engfailanal.2015.08.043
Kanálik, M., Margitová, A., Urbanský, J., & Beňa, L. (2019). Temperature calculation of overhead power line conductors according to the CIGRE technical brochure 207. In 2019 20th International Scientific Conference on Electric Power Engineering (EPE), Kouty nad Desnou, Czech Republic. IEEE. https://doi.org/10.1109/EPE.2019.8778173
Kandanaarachchi, S., Anantharama, N., & Munoz, M. A. (2020). Early detection of vegetation ignition due to powerline faults. IEEE Transactions on Power Delivery, 36(3), 1324–1334. https://doi.org/10.1109/TPWRD.2020.3006553
Katrasnik, J., Pernus, F., & Likar, B. (2008). New robot for power line inspection. In 2008 IEEE Conference on Robotics, Automation and Mechatronics (pp. 1195–1200), Chengdu, China. IEEE. https://doi.org/10.1109/RAMECH.2008.4681335
Katrasnik, J., Pernus, F., & Likar, B. (2009). A survey of mobile robots for distribution power line inspection. IEEE Transactions on Power Delivery, 25(1), 485–493. https://doi.org/10.1109/TPWRD.2009.2035427
Kayastha, N., Niyato, D., Hossain, E., & Han, Z. (2014). Smart grid sensor data collection, communication, and networking: A tutorial. Wireless Communications and Mobile Computing, 14(11), 1055–1087. https://doi.org/10.1002/wcm.2258
Keyhan, H., McClure, G., & Habashi, W. G. (2013). Dynamic analysis of an overhead transmission line subject to gusty wind loading predicted by wind–conductor interaction. Computers & Structures, 122, 135–144. https://doi.org/10.1016/j.compstruc.2012.12.022
Khan, A. (2020). An analysis of mechanical effects of short circuit on strain bus using finite element approach and validation by modelling an actual strain bus subjected to short circuit tests by comparing computed results with experimental data. In 2020 CIGRE Canada Conference, Toronto, Ontario.
Kikuchi, N., Matsuzaki, Y., Yukino, T., & Ishida, H. (2003). Aerodynamic drag of new-design electric power wire in a heavy rainfall and wind. Journal of Wind Engineering and Industrial Aerodynamics, 91(1–2), 41–51. https://doi.org/10.1016/S0167-6105(02)00334-3
Kim, J., & Hangan, H. (2007). Numerical simulations of impinging jets with application to downbursts. Journal of Wind Engineering and Industrial Aerodynamics, 95(4), 279–298. https://doi.org/10.1016/j.jweia.2006.07.002
Kraus, M., & Hagedorn, P. (1991). Aeolian vibrations: wind energy input evaluated from measurements on an energized transmission line. IEEE Transactions on Power Delivery, 6(3), 1264–1270. https://doi.org/10.1109/61.85875
Kul’kov, V., Sultanov, M., Kuryanov, V., & Sh, N. D. (2021a). Electrical reliability simulation based on analysis of fatigue strength of overhead line wires. In 2021 3rd International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE), Moscow, Russia. IEEE. https://doi.org/10.1109/REEPE51337.2021.9388090
Kul’kov, V., Tyshkevich, V., Kuryanov, V., Sultanov, M., Norov, D. S., Narykova, M., Kadomtsev, A., Prasolov, N., Brunkov, P., & Likhachev, A. (2021b). Experimental studies of fatigue strength and surface electrical resistance of aluminum wire of overhead power transmission lines. Safety and Reliability of Power Industry, 2022(4), 189–195. https://doi.org/10.24223/1999-5555-2021-14-4-189-195
Lai, C.-M., & Teh, J. (2022). Comprehensive review of the dynamic thermal rating system for sustainable electrical power systems. Energy Reports, 8, 3263–3288. https://doi.org/10.1016/j.egyr.2022.02.085
Larrauri, J. I., Sorrosal, G., & González, M. (2013). Automatic system for overhead power line inspection using an unmanned aerial vehicle – RELIFO project. In 2013 International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 244–252), Atlanta, GA, USA. IEEE. https://doi.org/10.1109/ICUAS.2013.6564696
Li, C. (2000). A stochastic model of severe thunderstorms for transmission line design. Probabilistic Engineering Mechanics, 15(4), 359–364. https://doi.org/10.1016/S0266-8920(99)00037-5
Li, W. (2002). Incorporating aging failures in power system reliability evaluation. IEEE Transactions on Power systems, 17(3), 918–923. https://doi.org/10.1109/TPWRS.2002.800989
Li, W. (2004). Evaluating mean life of power system equipment with limited end-of-life failure data. IEEE Transactions on Power Systems, 19(1), 236–242. https://doi.org/10.1109/TPWRS.2003.821434
Li, F., & Brown, R. E. (2004). A cost-effective approach of prioritizing distribution maintenance based on system reliability. IEEE Transactions on Power Delivery, 19(1), 439–441. https://doi.org/10.1109/TPWRD.2003.820411
Li, L., Zhang, Z., & Ningbo, X. (2017). Research on aeolian vibration fatigue life of conductors. In Proceedings of the Second International Conference on Mechanics, Materials and Structural Engineering (ICMMSE 2017). Atlantis Press. https://doi.org/10.2991/icmmse-17.2017.28
Li, S., Song, G., Gao, Y., Zhen, F., Li, C., & Song, A. (2020). Design and implementation of an inspection robot for non-destructive testing of aluminum conductor composite core wires. In 2020 5th International Conference on Advanced Robotics and Mechatronics (ICARM) (pp. 448–453), Shenzhen, China. IEEE. https://doi.org/10.1109/ICARM49381.2020.9195372
Li, M., Hu, J., Yang, Y., Zhao, M., Wang, X., & Jiang, X. (2023). Study on the dynamic characteristics of tensional force for ice accumulated overhead lines considering instantaneous wind speed. Energies, 16(13), Article 4913. https://doi.org/10.3390/en16134913
Liang, S., Zou, L., Wang, D., & Cao, H. (2015). Investigation on wind tunnel tests of a full aeroelastic model of electrical transmission tower-line system. Engineering Structures, 85, 63–72. https://doi.org/10.1016/j.engstruct.2014.11.042
Liu, Y., Xv, J., Yuan, H., Lv, J., & Ma, Z. (2018). Health assessment and prediction of overhead line based on health index. IEEE Transactions on Industrial Electronics, 66(7), 5546–5557. https://doi.org/10.1109/TIE.2018.2868028
Loredo-Souza, A. M., & Davenport, A. (2001). A novel approach for wind tunnel modelling of transmission lines. Journal of Wind Engineering and Industrial Aerodynamics, 89(11–12), 1017–1029. https://doi.org/10.1016/S0167-6105(01)00096-4
Loredo-Souza, A., & Davenport, A. (2002). Wind tunnel aeroelastic studies on the behaviour of two parallel cables. Journal of Wind Engineering and Industrial Aerodynamics, 90(4–5), 407–414. https://doi.org/10.1016/S0167-6105(01)00211-2
Lovrenčič, A., Peter, Z., Lovrenčić, V., & Rizzetto, A. (2022). Inspection of energized aged conductors using non-destructive, in-situ inspection technology. In 2022 13th International Conference on Live Maintenance (ICOLIM), Turin, Italy. IEEE. https://doi.org/10.1109/ICOLIM56184.2022.9840710
Lu, J., Wang, Q., Wang, L., Mei, H., Yang, L., Xu, X., & Li, L. (2019). Study on wind tunnel test and galloping of iced quad bundle conductor. Cold Regions Science and Technology, 160, 273–287. https://doi.org/10.1016/j.coldregions.2018.12.009
Majhi, A. A. K., & Mohanty, S. (2024). A comprehensive review on internet of things applications in power systems. IEEE Internet of Things Journal, 11(21), 34896–34923. https://doi.org/10.1109/JIOT.2024.3447241
Majidi, M., Fadali, M. S., Etezadi-Amoli, M., & Oskuoee, M. (2015). Partial discharge pattern recognition via sparse representation and ANN. IEEE Transactions on Dielectrics and Electrical Insulation, 22(2), 1061–1070. https://doi.org/10.1109/TDEI.2015.7076807
Manurung, A. S., Mustafa, F., & Bayurinaldi, I. (2023). Estimation of compression dead-end clamp temperature to identify hot spot of transmission power line by steady-state heat balance and pitting corrosion. In 2023 4th International Conference on High Voltage Engineering and Power Systems (ICHVEPS) (pp. 567–572), Denpasar Bali, Indonesia. IEEE. https://doi.org/10.1109/ICHVEPS58902.2023.10257535
Matikainen, L., Lehtomäki, M., Ahokas, E., Hyyppä, J., Karjalainen, M., Jaakkola, A., Kukko, A., & Heinonen, T. (2016). Remote sensing methods for power line corridor surveys. ISPRS Journal of Photogrammetry and Remote Sensing, 119, 10–31. https://doi.org/10.1016/j.isprsjprs.2016.04.011
Matsumiya, H., Nishihara, T., & Yagi, T. (2018). Aerodynamic modeling for large-amplitude galloping of four-bundled conductors. Journal of Fluids and Structures, 82, 559–576. https://doi.org/10.1016/j.jfluidstructs.2018.08.003
Meynen, S., Verma, H., Hagedorn, P., & Schäfer, M. (2005). On the numerical simulation of vortex-induced vibrations of oscillating conductors. Journal of Fluids and Structures, 21(1), 41–48. https://doi.org/10.1016/j.jfluidstructs.2005.05.019
Molina Gómez, A. (2020). Improved planning of wind farms using dynamic transformer rating [Master’s thesis]. KTH, School of Electrical Engineering and Computer Science.
Montambault, S., & Pouliot, N. (2003). The HQ LineROVer: contributing to innovation in transmission line maintenance. In 2003 IEEE 10th International Conference on Transmission and Distribution Construction, Operation and Live-Line Maintenance (IEEE ESMO) (pp. 33–40), Orlando, FL, USA. IEEE. https://doi.org/10.1109/TDCLLM.2003.1196466
Morgan, V. T. (1996). Effect of elevated temperature operation on the tensile strength of overhead conductors. IEEE Transactions on Power Delivery, 11(1), 345–352. https://doi.org/10.1109/61.484034
Naranpanawe, L., Ma, H., & Saha, T. (2018). Overhead conductor condition monitoring. Milestone report 1. The University of Queensland, Australia.
Naranpanawe, L., Ma, H., Saha, T. K., Lee, C., & Ghosal, A. (2020). A practical health index for overhead conductors: experience from Australian distribution networks. IEEE Access, 8, 218863–218873. https://doi.org/10.1109/ACCESS.2020.3042486
Nguyen, V. N., Jenssen, R., & Roverso, D. (2018). Automatic autonomous vision-based power line inspection: A review of current status and the potential role of deep learning. International Journal of Electrical Power & Energy Systems, 99, 107–120. https://doi.org/10.1016/j.ijepes.2017.12.016
Nguyen, V. N., Jenssen, R., & Roverso, D. (2019). Intelligent monitoring and inspection of power line components powered by UAVs and deep learning. IEEE Power and Energy Technology Systems Journal, 6(1), 11–21. https://doi.org/10.1109/JPETS.2018.2881429
Noiseux, D., Houle, S., & Beauchemin, R. (1988). Transformation of wind tunnel data on aeolian vibrations for application to random conductor vibrations in a turbulent wind. IEEE Transactions on Power Delivery, 3(1), 265–271. https://doi.org/10.1109/61.4254
Omrani, A., Langlois, S., Van Dyke, P., Lalonde, S., Karganroudi, S. S., & Dieng, L. (2021). Fretting fatigue life assessment of overhead conductors using a clamp/conductor numerical model and biaxial fretting fatigue tests on individual wires. Fatigue & Fracture of Engineering Materials & Structures, 44(6), 1498–1514. https://doi.org/10.1111/ffe.13444
Padhi, C. K., Panda, S., & Biswal, G. R. (2021). Optimal recharging of EVs for peak power shaving and valley filling using EV-aggregator model in a micro-grid. Journal of Physics: Conference Series, 1854, Article 012016. https://doi.org/10.1088/1742-6596/1854/1/012016
Pagnano, A., Höpf, M., & Teti, R. (2013). A roadmap for automated power line inspection. Maintenance and repair. Procedia Cirp, 12, 234–239. https://doi.org/10.1016/j.procir.2013.09.041
Papailiou, K. O. (2017). Overhead lines. Springer. https://doi.org/10.1007/978-3-319-31747-2
Pereira, M., & Pinto, L. (1992). A new computational tool for composite reliability evaluation. IEEE Transactions on Power Systems, 7(1), 258–264. https://doi.org/10.1109/59.141712
Petzold, F., Schlapp, H., Gulski, E., Seitz, P. P., & Quak, B. (2008). Advanced solution for on-site diagnosis of distribution power cables. IEEE Transactions on Dielectrics and Electrical Insulation, 15(6), 1584–1589. https://doi.org/10.1109/TDEI.2008.4712661
Pinto, A. V., Sebrao, M. Z., Lourenco, C. R. S., de Almeida, I. S. A., Saad, J., & Lourenco, P. M. (2010). Remote detection of internal corrosion in conductor cables of power transmission lines. In 2010 1st International Conference on Applied Robotics for the Power Industry, Montreal, QC, Canada. IEEE. https://doi.org/10.1109/CARPI.2010.5624453
Popova, K., & Prošek, T. (2022). Corrosion monitoring in atmospheric conditions: a review. Metals, 12(2), Article 171. https://doi.org/10.3390/met12020171
Pouliot, N., & Montambault, S. (2008). Geometric design of the LineScout, a teleoperated robot for power line inspection and maintenance. In 2008 IEEE International Conference on Robotics and Automation (pp. 3970–3977), Pasadena, CA, USA. IEEE. https://doi.org/10.1109/ROBOT.2008.4543821
Pouliot, N., Mussard, D., & Montambault, S. (2012). Localization and archiving of inspection data collected on power lines using LineScout technology. In 2012 2nd International Conference on Applied Robotics for the Power Industry (CARPI) (pp. 197–202), Zurich, Switzerland. IEEE. https://doi.org/10.1109/CARPI.2012.6473341
Pouliot, N., Richard, P.-L., & Montambault, S. (2015). LineScout technology opens the way to robotic inspection and maintenance of high-voltage power lines. IEEE Power and Energy Technology Systems Journal, 2(1), 1–11. https://doi.org/10.1109/JPETS.2015.2395388
Qi, Y., Rui, X., Ji, K., Liu, C., & Zhou, C. (2019). Study on aeolian vibration suppression schemes for large crossing span of ultra-high-voltage eight-bundle conductors. Advances in Mechanical Engineering, 11(4), Article 1687814019842706. https://doi.org/10.1177/1687814019842706
Rácz, L., & Németh, B. (2021). Dynamic line rating – An effective method to increase the safety of power lines. Applied Sciences, 11(2), Article 492. https://doi.org/10.3390/app11020492
Rácz, L., & Németh, B. (2022). A novel concept of dynamic line rating systems based on soft computing models. In 2022 10th International Conference on Smart Grid (icSmartGrid) (pp. 131–136), Istanbul, Turkey. IEEE. https://doi.org/10.1109/icSmartGrid55722.2022.9848683
Rajan, J. S., & Rudranna, N. (2013). Electric stress distribution in paper oil insulation due to sulphur corrosion of copper conductors. Journal of Electrostatics, 71(3), 429–434. https://doi.org/10.1016/j.elstat.2012.12.025
Rajeev, P., Bandara, S., Gad, E., & Shan, J. (2022). Structural assessment techniques for in-service crossarms in power distribution Networks. Infrastructures, 7(7), Article 94. https://doi.org/10.3390/infrastructures7070094
Rawlins, C. (1983). Wind tunnel measurements of the power imparted to a model of a vibrating conductor. IEEE Transactions on Power Apparatus and Systems, PAS-102(4), 963–971. https://doi.org/10.1109/TPAS.1983.317810
Reinke, G., Badibanga, R. K., Pestana, M. S., de Almeida Ferreira, J. L., Araujo, J. A., & da Silva, C. R. M. (2020). Failure analysis of aluminum wires in all aluminum alloy conductors-AAAC. Engineering Failure Analysis, 107, Article 104197. https://doi.org/10.1016/j.engfailanal.2019.104197
Rivas, J., Boya-Lara, C., & Poveda, H. (2022). Partial discharge detection in power lines using automated machine learning. In 2022 8th International Engineering, Sciences and Technology Conference (IESTEC) (pp. 223–230), Panama, Panama. IEEE. https://doi.org/10.1109/IESTEC54539.2022.00041
Rocha, P., Langlois, S., Lalonde, S., Araújo, J., & Castro, F. (2022). A general life estimation method for overhead conductors based on fretting fatigue behavior of wires. Theoretical and Applied Fracture Mechanics, 121, Article 103443. https://doi.org/10.1016/j.tafmec.2022.103443
Roncolatto, R., Romanelli, N., Hirakawa, A., Horikawa, O., Vieira, D., Yamamoto, R., Finotto, V., Sverzuti, V., & Lopes, I. (2010). Robotics applied to work conditions improvement in power distribution lines maintenance. In 2010 1st International Conference on Applied Robotics for the Power Industry, Montreal, QC, Canada. IEEE. https://doi.org/10.1109/CARPI.2010.5624436
Rossi, A., Jubayer, C., Koss, H., Arriaga, D., & Hangan, H. (2020). Combined effects of wind and atmospheric icing on overhead transmission lines. Journal of Wind Engineering and Industrial Aerodynamics, 204, Article 104271. https://doi.org/10.1016/j.jweia.2020.104271
Said, J., Garcin, S., Fouvry, S., Cailletaud, G., Yang, C., & Hafid, F. (2020). A multi-scale strategy to predict fretting-fatigue endurance of overhead conductors. Tribology International, 143, Article 106053. https://doi.org/10.1016/j.triboint.2019.106053
Sankarakrishnan, A., & Billinton, R. (1995). Sequential Monte Carlo simulation for composite power system reliability analysis with time varying loads. IEEE Transactions on Power Systems, 10(3), 1540–1545. https://doi.org/10.1109/59.466491
Sayarshad, H. R., & Ghorbanloo, R. (2023). Evaluating the resilience of electrical power line outages caused by wildfires. Reliability Engineering & System Safety, 240, Article 109588. https://doi.org/10.1016/j.ress.2023.109588
Shan, L., Jenke, L., & Cannon Jr, D. (1992). Field determination of conductor drag coefficients. Journal of Wind Engineering and Industrial Aerodynamics, 41(1–3), 835–846. https://doi.org/10.1016/0167-6105(92)90504-4
Shehata, A., El Damatty, A., & Savory, E. (2005). Finite element modeling of transmission line under downburst wind loading. Finite Elements in Analysis and Design, 42(1), 71–89. https://doi.org/10.1016/j.finel.2005.05.005
Srivastav, A., Sagar, R., Malik, M. A., & Vishwanath, M. (2021). Mechanism, design and kinematics for a transmission line inspection robot. In 2021 2nd International Conference for Emerging Technology (INCET), Belagavi, India. IEEE. https://doi.org/10.1109/INCET51464.2021.9456243
Standards Australia. (1989). Conductors – Bare overhead, aluminium and aluminium alloy – Steel reinforced (AS 3607-1989). Australian standard.
Standards Australia. (1991a). Conductors – Bare overhead – Hard-drawn copper (AS 1746-1991). Australian standard.
Standards Australia. (1991b). Conductors – Bare overhead – Aluminium and sluminium alloy (AS 1531-1991). Australian standard.
Standards Australia. (1992a). Steel conductors and stays – Bare overhead, Part 1: Galvanized (SC/GZ) (AS 1222.1-1992). Australian standard.
Standards Australia. (1992b). Steel conductors and stays – Bare overhead, Part 2: Aluminium clad (SC/AC) (AS 1222.2-1992). Australian standard.
Standards Australia, & Standards New Zealand. (2000). Electrical cables – Cross-linked polythene insulated – Aerial bundled – For working voltages up to and including 0.6/1 (1.2) kV- Part 1: Aluminium conductors (AS/NZS 3560.1:2000). Australian/New Zealand standard.
Standards Australia, & Standards New Zealand. (2002). Conductors – Covered overhead – For working voltages 6.35/11 (12) kV up to and including 19/33 (36) kV (AS/NZS 3675:2002). Australian/New Zealand standard.
Standards Australia, & Standards New Zealand. (2003). Structural design actions, Part 3: Snow and ice actions (AS/NZS 1170.3:2003). Australian/New Zealand standard.
Standards Australia, & Standards New Zealand. (2016). Overhead line design (AS/NZS 7000:2016). Australian/New Zealand standard.
Standards Australia, & Standards New Zealand. (2021). Structural design actions, Part 2: Wind actions (AS/NZS 1170.2:2021). Australian/New Zealand standard.
Steennis, F., Wagenaars, P., van der Wielen, P., Wouters, P., Li, Y., Broersma, T., Harmsen, D., & Bleeker, P. (2016). Guarding MV cables on-line: With travelling wave based temperature monitoring, fault location, PD location and PD related remaining life aspects. IEEE Transactions on Dielectrics and Electrical Insulation, 23(3), 1562–1569. https://doi.org/10.1109/TDEI.2016.005566
Stephen, R., & Iglesias, J. (2023). Phase/pole configuration, conductor and hardware. In R. Stephen, & J. Iglesias (Eds.), Compact overhead line design. CIGRE green books (pp. 53–101). Springer, Cham. https://doi.org/10.1007/978-3-031-44524-8_4
Stockton, G. R., & Tache, A. (2006). Advances in applications for aerial infrared thermography. In Proceedings of Thermosense XXVIII (Vol. 6205), Orlando, FL, USA. https://doi.org/10.1117/12.669513
Su, Y., & Teh, J. (2022). Two-stage optimal dispatching of AC/DC hybrid active distribution systems considering network flexibility. Journal of Modern Power Systems and Clean Energy, 11(1), 52–65. https://doi.org/10.35833/MPCE.2022.000424
Su, Y., Teh, J., & Chen, C. (2023a). Optimal dispatching for AC/DC hybrid distribution systems with electric vehicles: Application of cloud-edge-device cooperation. IEEE Transactions on Intelligent Transportation Systems, 25(3), 3128–3139. https://doi.org/10.1109/TITS.2023.3314571
Su, Y., Teh, J., & Liu, W. (2023b). Hierarchical and distributed energy management framework for AC/DC hybrid distribution systems with massive dispatchable resources. Electric Power Systems Research, 225, Article 109856. https://doi.org/10.1016/j.epsr.2023.109856
Sun, P., Li, G., Town, G., & Konstantinou, G. (2022). Identifying opportunities for medium voltage DC systems in Australia. In 2022 IEEE PES 14th Asia-Pacific Power and Energy Engineering Conference (APPEEC), Melbourne, Australia. IEEE. https://doi.org/10.1109/APPEEC53445.2022.10072035
Suryadevara, N. K., & Biswal, G. R. (2019). Smart plugs: Paradigms and applications in the smart city-and-smart grid. Energies, 12(10), Article 1957. https://doi.org/10.3390/en12101957
Tasmanian Networks. (2015). Tasmanian Networks Pty Ltd annual report 2014–15. https://www.tasnetworks.com.au
Teh, J., Lai, C.-M., & Cheng, Y.-H. (2017). Impact of the real-time thermal loading on the bulk electric system reliability. IEEE Transactions on Reliability, 66(4), 1110–1119. https://doi.org/10.1109/TR.2017.2740158
Than, T. T. M. (2022). Research and development process in replacing aluminum conductor steel reinforced cable [Bachelor’s thesis]. HAMK, Finland.
Thomas, O. O., Chouinard, L., & Langlois, S. (2022). Probabilistic fatigue fragility curves for overhead transmission line conductor-clamp assemblies. Frontiers in Built Environment, 8, Article 833167. https://doi.org/10.3389/fbuil.2022.833167
Ubeda, J. R., & Allan, R. (1992). Sequential simulation applied to composite system reliability evaluation. IEE Proceedings C (Generation, Transmission and Distribution), 139(2), 81–86. https://doi.org/10.1049/ip-c.1992.0014
van Deursen, A., Wouters, P., & Steennis, F. (2019). Corrosion in low-voltage distribution networks and perspectives for online condition monitoring. IEEE Transactions on Power Delivery, 34(4), 1423–1431. https://doi.org/10.1109/TPWRD.2019.2903730
Vargel, C. (2020). Corrosion of aluminium. Elsevier. https://doi.org/10.1016/B978-0-08-099925-8.00008-9
Vasquez, W. A., Jayaweera, D., & Játiva-Ibarra, J. (2017). End-of-life failure modelling of overhead lines considering loading and weather effects. In 2019 IEEE International Conference on Power, Electrical, and Electronics and Industrial Applications (PEEIACON), Torino, Italy. IEEE. https://doi.org/10.1109/ISGTEurope.2017.8260134
Velásquez, R. A., & Lara, J. M. (2016). Robot unit for cost and time balance using automatic inspection on overhead lines. In 2016 IEEE ANDESCON, Arequipa, Peru. IEEE. https://doi.org/10.1109/ANDESCON.2016.7836194
Velásquez, R. M. A., & Lara, J. V. M. (2018). Methodology for overhead line conductor remaining life aging infrastructure and asset management. In 2018 IEEE PES Transmission & Distribution Conference and Exhibition-Latin America (T&D-LA), Lima, Peru. IEEE. https://doi.org/10.1109/TDC-LA.2018.8511752
Vemula, S., & Frye, M. (2020). Real-time powerline detection system for an unmanned aircraft system. In 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 4493–4497), Toronto, ON, Canada. IEEE. https://doi.org/10.1109/SMC42975.2020.9283354
Venkatesh, D., Swankg, E. S., Valarmathi, R., & Uma, R. (2020). PD pattern recognition on transmission lines using tree-based models. In 2020 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS), Chennai, India. IEEE. https://doi.org/10.1109/ICPECTS49113.2020.9336980
Wakahama, G., Kuroiwa, D., & Gotō, K. (1977). Snow accretion on electric wires and its prevention. Journal of Glaciology, 19(81), 479–487. https://doi.org/10.3189/S0022143000215682
Wang, L. (2016). The fault causes of overhead lines in distribution network. MATEC Web of Conferences, 61, Article 02017. https://doi.org/10.1051/matecconf/20166102017
Wang, Y., Chen, C.-F., Kong, P.-Y., Li, H., & Wen, Q. (2022). A cyber–physical–social perspective on future smart distribution systems. Proceedings of the IEEE, 111(7), 694–724. https://doi.org/10.1109/JPROC.2022.3192535
Wang, F., Song, G., Mao, J., Li, Y., Ji, Z., Chen, D., & Song, A. (2023). Internal defect detection of overhead aluminum conductor composite core transmission lines with an inspection robot and computer vision. IEEE Transactions on Instrumentation and Measurement, 72, Article 3512516. https://doi.org/10.1109/TIM.2023.3265104
Wardlaw, R., Cooper, K., Ko, R., & Watts, J. (1975). Wind tunnel and analytical investigations into the aeroelastic behaviour of bundled conductors. IEEE Transactions on Power Apparatus and Systems, 94(2), 642–654. https://doi.org/10.1109/T-PAS.1975.31892
Western Power. (2021). State of the energy market 2020/21. https://www.westernpower.com.au
Whapham, R. (2012). Aeolian vibration of conductors: Theory, laboratory simulation & field measurement. In Electrical Transmission and Substation Structures 2012: Solutions to Building the Grid of Tomorrow (pp. 262–274). https://doi.org/10.1061/9780784412657.023
Wild, M., Tenbohlen, S., Gulski, E., Jongen, R., & De Vries, F. (2013). Practical aspects of PD localization for long length power cables. In 2013 IEEE Electrical Insulation Conference (EIC) (pp. 499–503), Ottawa, ON, Canada. IEEE. https://doi.org/10.1109/EIC.2013.6554298
Wong, K., Marxsen, T., Liang, M., & Chahal, J. (2019). A novel autonomous technique for early fault detection on overhead power lines. In 2019 IEEE 4th International Conference on Condition Assessment Techniques in Electrical Systems (CATCON), Chennai, India. IEEE. https://doi.org/10.1109/CATCON47128.2019.CN0027
Wood, G. S., Kwok, K. C., Motteram, N. A., & Fletcher, D. F. (2001). Physical and numerical modelling of thunderstorm downbursts. Journal of Wind Engineering and Industrial Aerodynamics, 89(6), 535–552. https://doi.org/10.1016/S0167-6105(00)00090-8
Xiao, X., Wu, G., & Li, S. (2007). Dynamic coupling simulation of a power transmission line inspection robot with its flexible moving path when overcoming obstacles. In 2007 IEEE International Conference on Automation Science and Engineering (pp. 326–331), Scottsdale, AZ, USA. IEEE. https://doi.org/10.1109/COASE.2007.4341691
Xie, Q., Cai, Y., & Xue, S. (2017). Wind-induced vibration of UHV transmission tower line system: Wind tunnel test on aero-elastic model. Journal of Wind Engineering and Industrial Aerodynamics, 171, 219–229. https://doi.org/10.1016/j.jweia.2017.10.011
Xie, Q., He, C., Yang, Z., & Xue, S. (2019). Influence of flexible conductors on the seismic responses of interconnected electrical equipment. Engineering Structures, 191, 148–161. https://doi.org/10.1016/j.engstruct.2019.04.050
Xin-min, L., Xiao-chun, N., Yong-kun, Z., Yi, Y., & Zhi-tao, Y. (2017). Wind tunnel tests on aerodynamic characteristics of ice-coated 4-bundled conductors. Mathematical Problems in Engineering, 2017, Article 1628173. https://doi.org/10.1155/2017/1628173
Yan, B., Liu, X., Lv, X., & Zhou, L. (2016). Investigation into galloping characteristics of iced quad bundle conductors. Journal of Vibration and Control, 22(4), 965–987. https://doi.org/10.1177/1077546314538479
Yang, L., & Teh, J. (2023). Review on vulnerability analysis of power distribution network. Electric Power Systems Research, 224, Article 109741. https://doi.org/10.1016/j.epsr.2023.109741
Yang, L., Teh, J., & Alharbi, B. (2024). Optimizing distributed generation and energy storage in distribution networks: Harnessing metaheuristic algorithms with dynamic thermal rating technology. Journal of Energy Storage, 91, Article 111989. https://doi.org/10.1016/j.est.2024.111989
Yao, K., Yano, H., Tadano, H., & Iwamuro, N. (2020). Investigations of SiC MOSFET short-circuit failure mechanisms using electrical, thermal, and mechanical stress analyses. IEEE Transactions on Electron Devices, 67(10), 4328–4334. https://doi.org/10.1109/TED.2020.3013192
Yaqoob, Y., Marzuki, A., Lai, C.-M., & Teh, J. (2022). Fuzzy dynamic thermal rating system-based thermal aging model for transmission lines. Energies, 15(12), Article 4395. https://doi.org/10.3390/en15124395
Zainuddin, N. M., Rahman, M. A., Kadir, M. A., Ali, N. N., Ali, Z., Osman, M., Mansor, M., Ariffin, A. M., Rahman, M. S. A., & Nor, S. (2020). Review of thermal stress and condition monitoring technologies for overhead transmission lines: Issues and challenges. IEEE Access, 8, 120053–120081. https://doi.org/10.1109/ACCESS.2020.3004578
Zhang, X., Pang, B., Liu, Y., Liu, S., Xu, P., Li, Y., Liu, Y., Qi, L., & Xie, Q. (2021). Review on detection and analysis of partial discharge along power cables. Energies, 14(22), Article 7692. https://doi.org/10.1016/j.jweia.2014.10.020
Zhao, S., Zhang, C., Dai, X., & Yan, Z. (2023). Review of wind-induced effects estimation through nonlinear analysis of tall buildings, high-rise structures, flexible bridges and transmission lines. Buildings, 13(8), Article 2033. https://doi.org/10.3390/buildings13082033
Zheng, X., Jia, R., Gong, L., Zhang, G., & Dang, J. (2021). Component identification and defect detection in transmission lines based on deep learning. Journal of Intelligent & Fuzzy Systems, 40(2), 3147–3158. https://doi.org/10.3233/JIFS-189353
Zhou, F., Wang, J., Li, Y., Wang, J., & Xiao, H. (2005). Control of an inspection robot for 110KV power transmission lines based on expert system design methods. In Proceedings of 2005 IEEE Conference on Control Applications (CCA 2005) (pp. 1563–1568), Toronto, ON, Canada. IEEE. https://doi.org/10.1109/CCA.2005.1507355
Zhou, L., Yan, B., Zhang, L., & Zhou, S. (2016). Study on galloping behavior of iced eight bundle conductor transmission lines. Journal of Sound and Vibration, 362, 85–110. https://doi.org/10.1016/j.jsv.2015.09.046
Zhu, Z., Lu, S., Gao, B., Yi, T., & Chen, B. (2016). Life cycle cost analysis of three types of power lines in 10 kV distribution network. Inventions, 1(4), Article 20. https://doi.org/10.3390/inventions1040020