Share:


Review of the design and condition monitoring of overhead power distribution conductors

    Shiroshi Jayathilake Affiliation
    ; Pathmanathan Rajeev Affiliation
    ; Emad Gad Affiliation

Abstract

Bushfires, also known as wildfires in some parts of the world, is a major hazard with significant risks to communities and the environment. Such fires can initiate from a number of sources including lightning. However, one of the possibilities for initiating bushfires is faults in the power system. Faults in conductors can happen overtime and monitoring is essential for effective maintenance and avoiding unnecessary power failures. Simultaneously, assessing conductor reliability is critical for powerline asset management. This paper comprehensively reviews conductor design and monitoring in the distribution network. Various conductor types and applications are described using population statistics from the Australian power distribution network. Furthermore, the design approach in the Australian Standard is briefly explained and further design methodologies are assessed, emphasizing the progress of innovative approaches. Additionally, potential conductor failure modes in Australia’s distribution network are identified. The paper also outlines different condition assessment methods and explores their advancement. Finally, possible models for evaluating conductor reliability are examined, underscoring their benefits in accounting for weather-induced impacts.

Keyword : wind load, design aspects, deterioration, failure identification, reliability, current practice

How to Cite
Jayathilake, S., Rajeev, P., & Gad, E. (2025). Review of the design and condition monitoring of overhead power distribution conductors. Journal of Civil Engineering and Management, 31(4), 338–361. https://doi.org/10.3846/jcem.2025.23261
Published in Issue
Apr 16, 2025
Abstract Views
65
PDF Downloads
18
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Abas, N. H., Ab Kadir, M. Z. A., Azis, N., Jasni, J., Ab Aziz, N. F., & Khurshid, Z. M. (2024). Optimizing grid with dynamic line rating of conductors: A comprehensive review. IEEE Access, 12, 9738–9756. https://doi.org/10.1109/ACCESS.2024.3352595

Aboshosha, H. (2014). Response of transmission line conductors under downburst wind [PhD thesis]. The University of Western Ontario, Canada. https://doi.org/10.3850/978-981-07-8012-8_P11

Aboshosha, H., & El Damatty, A. (2012). Capacity of electrical transmission towers under downburst loading. In The First Australasia and South-East Asia Structural Engineering and Construction Conference, Perth, WA, Australia.

Aboshosha, H., Bitsuamlak, G., & El Damatty, A. (2015). Turbulence characterization of downbursts using LES. Journal of Wind Engineering and Industrial Aerodynamics, 136, 44–61. https://doi.org/10.1016/j.jweia.2014.10.020

Aggarwal, R., Johns, A., Jayasinghe, J., & Su, W. (2000). An overview of the condition monitoring of overhead lines. Electric Power Systems Research, 53(1), 15–22. https://doi.org/10.1016/S0378-7796(99)00037-1

Ahmed, N., & Srinivas, N. (1998). On-line partial discharge detection in cables. IEEE Transactions on Dielectrics and Electrical Insulation, 5(2), 181–188. https://doi.org/10.1109/94.671927

Alawar, A., Bosze, E. J., & Nutt, S. R. (2005). A composite core conductor for low sag at high temperatures. IEEE Transactions on Power Delivery, 20(3), 2193–2199. https://doi.org/10.1109/TPWRD.2005.848736

Albizu, I., Mazon, A., & Fernandez, E. (2011). A method for the sag-tension calculation in electrical overhead lines. International Review of Electrical Engineering, 6(3), 1380–1389.

Allan, R. N. (2013). Reliability evaluation of power systems. Springer Science & Business Media.

Allan, R., & Billinton, R. (1988). Concepts of power system reliability evaluation. International Journal of Electrical Power & Energy Systems, 10(3), 139–141. https://doi.org/10.1016/0142-0615(88)90028-2

Alstad, K., Refsnaes, S., Bovre, T., & Thomassen, H. (1993). A new overhead line concept based on covered conductors. In 12th International Conference on Electricity Distribution (CIRED) (Vol. 3, pp. 3.7/1–3.7/5), Birmingham, UK. IEEE.

Aracil, R., Ferre, M., Hernando, M., Pinto, E., & Sebastian, J. (2002). Telerobotic system for live-power line maintenance: ROBTET. Control Engineering Practice, 10(11), 1271–1281. https://doi.org/10.1016/S0967-0661(02)00182-X

Australian Energy Regulator. (2022). State of the energy market 2022.

Awadallah, S. K. E. (2014). Probabilistic methodology for prioritising replacement of ageing power transformers based on reliability assessment of transmission system [PhD thesis]. The University of Manchester, UK.

Bandara, S., Rajeev, P., & Gad, E. (2023). Power distribution system faults and wildfires: Mechanisms and prevention. Forests, 14(6), Article 1146. https://doi.org/10.3390/f14061146

Bandara, S., Rajeev, P., & Gad, E. (2024). A review on condition assessment technologies for power distribution network infrastructure. Structure and Infrastructure Engineering, 20(11), 1835–1851. https://doi.org/10.1080/15732479.2023.2177680

Bartoli, G., Cluni, F., Gusella, V., & Procino, L. (2006). Dynamics of cable under wind action: Wind tunnel experimental analysis. Journal of Wind Engineering and Industrial Aerodynamics, 94(5), 259–273. https://doi.org/10.1016/j.jweia.2006.01.002

Bedi, G., Venayagamoorthy, G. K., Singh, R., Brooks, R. R., & Wang, K.-C. (2018). Review of Internet of Things (IoT) in electric power and energy systems. IEEE Internet of Things Journal, 5(2), 847–870. https://doi.org/10.1109/JIOT.2018.2802704

Bellemare, J., Hassanipour, M., Godin, S., Rousseau, G., & Pouliot, N. (2023). Validation through field data of LineCore, a lightweight Eddy-current sensor for the early detection of corrosion of ACSRs. In Proceedings of the 13th European Conference on Non-Destructive Testing (ECNDT 2023), Lisbon, Portugal. https://doi.org/10.58286/28196

Bhuiyan, M. M. I., Musilek, P., Heckenbergerova, J., & Koval, D. (2010). Evaluating thermal aging characteristics of electric power transmission lines. In CCECE 2010, Calgary, AB, Canada. https://doi.org/10.1109/CCECE.2010.5575137

Billinton, R., & Allan, R. N. (1984). Power-system reliability in perspective. Electronics and Power, 30(3), 231–236. https://doi.org/10.1049/ep.1984.0118

Billinton, R., & Allan, R. N. (1992). Reliability evaluation of engineering systems (2nd ed.). Springer. https://doi.org/10.1007/978-1-4899-0685-4

Billinton, R., & Wenyuan, L. (1991). Hybrid approach for reliability evaluation of composite generation and transmission systems using Monte-Carlo simulation and enumeration technique. IEE Proceedings C (Generation, Transmission and Distribution), 138(3). https://doi.org/10.1049/ip-c.1991.0029

Biswal, G. R., Maheshwari, R. P., & Dewal, M. (2011). Modeling, control, and monitoring of S3RS-based hydrogen cooling system in thermal power plant. IEEE Transactions on Industrial Electronics, 59(1), 562–570. https://doi.org/10.1109/TIE.2011.2134059

Blazquez, C. H. (1994). Detection of problems in high-power voltage transmission and distribution lines with an infrared scanner/video system. In Proceedings of Thermosense XVI: An International Conference on Thermal Sensing and Imaging Diagnostic Applications (Vol. 2245), Orlando, FL, USA. https://doi.org/10.1117/12.171186

Brettschneider, S., Lemke, E., Hinkle, J., & Schneider, M. (2002). Recent field experience in PD assessment of power cables using oscillating voltage waveforms. In Conference Record of the the 2002 IEEE International Symposium on Electrical Insulation (Cat. No. 02CH37316) (pp. 546–552), Boston, MA, USA. IEEE. https://doi.org/10.1109/ELINSL.2002.995995

Brika, D., & Laneville, A. (1996). A laboratory investigation of the aeolian power imparted to a conductor using a flexible circular cylinder. IEEE Transactions on Power Delivery, 11(2), 1145–1152. https://doi.org/10.1109/61.489379

Büchler, M. (2020). On the mechanism of cathodic protection and its implications on criteria including AC and DC interference conditions. Corrosion, 76(5), 451–463. https://doi.org/10.5006/3379

Chabart, O., & Lilien, J.-L. (1998). Galloping of electrical lines in wind tunnel facilities. Journal of Wind Engineering and Industrial Aerodynamics, 74, 967–976. https://doi.org/10.1016/S0167-6105(98)00088-9

Cimini Jr., C. A., & Fonseca, B. Q. A. (2013). Temperature profile of progressive damaged overhead electrical conductors. International Journal of Electrical Power & Energy Systems, 49, 280–286. https://doi.org/10.1016/j.ijepes.2012.12.015

Daminov, I., Prokhorov, A., Caire, R., & Alvarez-Herault, M.-C. (2021). Assessment of dynamic transformer rating, considering current and temperature limitations. International Journal of Electrical Power & Energy Systems, 129, Article 106886. https://doi.org/10.1016/j.ijepes.2021.106886

Dempsey, D., & White, H. (1996). Winds wreak havoc on lines. Transmission and Distribution World, 48(6), 32–37.

Dhaou, I. B. (2023). Design and implementation of an internet-of-things-enabled smart meter and smart plug for home-energy-management system. Electronics, 12(19), Article 4041. https://doi.org/10.3390/electronics12194041

Dong, B., Jiang, X., & Yin, F. (2022). Development and prospect of monitoring and prevention methods of icing disaster in China power grid. IET Generation, Transmission & Distribution, 16(22), 4480–4493. https://doi.org/10.1049/gtd2.12614

Electric Power Research Institute (2006). Field guide for visual inspection of polymer insulators.

Eso, M., Gururaja, P., & McNeil, R. (2021). Statistical modelling of 3-hourly wind patterns in Melbourne, Australia. Nature Environment and Pollution Technology, 20(2), 665–673. https://doi.org/10.46488/NEPT.2021.v20i02.025

Evoenergy. (2020). Overhead line sistribution design manual. https://www.evoenergy.com.au/-/media/evoenergy/documents/manuals/po07132-overhead-line-distribution-design-manual.pdf?la=en&hash=90F5E14B09095BB822D73565D53A7F77A3B8D852

Fadel, A. A., Rosa, D., Murça, L., Fereira, J., & Araújo, J. (2012). Effect of high mean tensile stress on the fretting fatigue life of an Ibis steel reinforced aluminium conductor. International Journal of Fatigue, 42, 24–34. https://doi.org/10.1016/j.ijfatigue.2011.03.007

Farquharson, F. B., & McHugh, R. E. (1956). Wind tunnel investigation of conductor vibration with use of rigid models [includes discussion]. Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems, 75(3), 871–878. https://doi.org/10.1109/AIEEPAS.1956.4499379

Farzaneh, M., & Savadjiev, K. (2006). Evaluation of tensile strength of ACSR conductors based on test data for individual strands. IEEE Transactions on Power Delivery, 22(1), 627–633. https://doi.org/10.1109/TPWRD.2006.881466

Farzaneh, M., & Chisholm, W. A. (2022). Techniques for protecting overhead lines in winter conditions: Dimensioning, icephobic surfaces, de-icing strategies. Springer. https://doi.org/10.1007/978-3-030-87455-1

Fekr, M. R., & McClure, G. (1998). Numerical modelling of the dynamic response of ice-shedding on electrical transmission lines. Atmospheric Research, 46(1–2), 1–11. https://doi.org/10.1016/S0169-8095(97)00046-X

Finotto, V., Horikawa, O., Hirakawa, A., & Chamas Filho, A. (2012). Pole type robot for distribution power line inspection. In 2012 2nd International Conference on Applied Robotics for the Power Industry (CARPI) (pp. 88–93), Zurich, Switzerland. IEEE. https://doi.org/10.1109/CARPI.2012.6473360

Flaga, A., Pistol, A., Krajewski, P., & Flaga, Ł. (2020). Aerodynamic and aeroelastic wind tunnel model tests of overhead power lines in triangular configuration under different icing conditions. Cold Regions Science and Technology, 170, Article 102919. https://doi.org/10.1016/j.coldregions.2019.102919

Florea, G. A., Gal, S., Mateescu, E., Tulici, N., & Pastrama, S. (2005). Romanian approach of ACSR overhead line conductor end of life using live line tehniques to get samples for testing. In CIRED 2005 – 18th International Conference and Exhibition on Electricity Distribution, Turin, Italy. https://doi.org/10.1049/cp:20050980

Frigerio, M., Buehlmann, P., Buchheim, J., Holdsworth, S. R., Dinser, S., Franck, C. M., Papailiou, K., & Mazza, E. (2016). Analysis of the tensile response of a stranded conductor using a 3D finite element model. International Journal of Mechanical Sciences, 106, 176–183. https://doi.org/10.1016/j.ijmecsci.2015.12.015

Fu, X., Li, H. N., & Wang, J. (2019). Failure analysis of a transmission tower subjected to combined wind and rainfall excitations. The Structural Design of Tall and Special Buildings, 28(10), Article e1615. https://doi.org/10.1002/tal.1615

Golightly, I., & Jones, D. (2005). Visual control of an unmanned aerial vehicle for power line inspection. In Proceedings of 12th International Conference on Advanced Robotics (ICAR’05) (pp. 288–295), Seattle, WA, USA. IEEE. https://doi.org/10.1109/ICAR.2005.1507426

Gómez, F. A., De María, J. G., Puertas, D. G., Baïri, A., & Arrabé, R. G. (2011). Numerical study of the thermal behaviour of bare overhead conductors in electrical power lines. In ACELAE’11: Proceedings of the 10th WSEAS International Conference on Communications, Electrical & Computer Engineering, and 9th WSEAS International Conference on Applied Electromagnetics, Wireless and Optical Communications (pp. 149–153).

Guerard, S. (2011). Power line conductors, a contribution to the analysis of their dynamic behaviour [PhD thesis]. Universite de Liege, Belgium.

Gulski, E., Smit, J. J., Seitz, P. N., Smit, J. C., & Turner, M. (1999). On-site PD diagnostics of power cables using oscillating wave test system. In 1999 Eleventh International Symposium on High Voltage Engineering (Vol. 5, pp. 112–115), London, UK. IEEE. https://doi.org/10.1049/cp:19990898

Gulski, E., Wester, F. J., Smit, J. J., Seitz, P. N., & Turner, M. (2000). Advanced partial discharge diagnostic of MV power cable system using oscillating wave test system. IEEE Electrical Insulation Magazine, 16(2), 17–25. https://doi.org/10.1109/57.833657

Gulski, E., Smit, J. J., & Wester, F. J. (2005). PD knowledge rules for insulation condition assessment of distribution power cables. IEEE Transactions on Dielectrics and Electrical Insulation, 12(2), 223–239. https://doi.org/10.1109/TDEI.2005.1430393

Gulski, E., Smit, J., Seitz, P., Quak, B., Petzold, F., & de Vries, F. (2007). Novel solutions in on-site diagnosis for distribution power cables.

Gulzar, M. A., Kumar, K., Javed, M. A., & Sharif, M. (2018). High-voltage transmission line inspection robot. In 2018 International Conference on Engineering and Emerging Technologies (ICEET), Lahore, Pakistan. IEEE. https://doi.org/10.1109/ICEET1.2018.8338632

Guo, D., Wang, P., Zheng, W., Li, Y., Li, J., Tang, W., Shi, L., & Liu, G. (2021). Investigation of sag behaviour for aluminium conductor steel reinforced considering tensile stress distribution. Royal Society Open Science, 8(8), Article 210049. https://doi.org/10.1098/rsos.210049

Hangan, H., Roberts, D., Xu, Z., & Kim, J. (2003). Downburst simulation. Experimental and numerical challenges. In Proceedings of the 11th International Conference on Wind Engineering, Lubbock, Texas, USA.

Hardy, C., & Van Dyke, P. (1995). Field observations on wind-induced conductor motions. Journal of Fluids and Structures, 9(1), 43–60. https://doi.org/10.1006/jfls.1995.1003

Hathout, I., Callery, K., Trac, J., & Hathout, T. (2018). Impact of thermal stresses on the end of life of overhead transmission conductors. In 2018 IEEE Power & Energy Society General Meeting (PESGM), Portland, OR, USA. IEEE. https://doi.org/10.1109/PESGM.2018.8586574

Havard, D., Bissada, M., Fajardo, C., Horrocks, D., Meale, J., Motlis, J., Tabatabai, M., & Yoshiki-Gravelsins, K. (1992). Aged ACSR conductors. II. Prediction of remaining life. IEEE Transactions on Power Delivery, 7(2), 588–595. https://doi.org/10.1109/61.127053

Jaffrey, N. A., & Hettiwatte, S. (2014). Corrosion detection in steel reinforced aluminium conductor cables. In 2014 Australasian Universities Power Engineering Conference (AUPEC), Perth, WA, Australia. IEEE. https://doi.org/10.1109/AUPEC.2014.6966630

Jakob, D. (2010). Challenges in developing a high-quality surface wind-speed data-set for Australia. Australian Meteorological and Oceanographic Journal, 60(4), 227–236. https://doi.org/10.22499/2.6004.001

Jamaleddine, A., McClure, G., Rousselet, J., & Beauchemin, R. (1993). Simulation of ice-shedding on electrical transmission lines using ADINA. Computers & Structures, 47(4–5), 523–536. https://doi.org/10.1016/0045-7949(93)90339-F

Jazebi, S., De Leon, F., & Nelson, A. (2019). Review of wildfire management techniques – Part I: Causes, prevention, detection, suppression, and data analytics. IEEE Transactions on Power Delivery, 35(1), 430–439. https://doi.org/10.1109/TPWRD.2019.2930055

Jeong, S., Kim, M.-G., Kim, J.-H., & Oh, K.-Y. (2023). Thermal monitoring of live-line power transmission lines with an infrared camera mounted on an unmanned aerial vehicle. Structural Health Monitoring, 22(6), 3707–3722. https://doi.org/10.1177/14759217231156359

Jia, Y., Shang, L., Nan, J., Hu, G., & Fang, Z. (2022). CFD analysis of fluid-dynamic and heat transfer effects generated by a fixed electricity transmission line interacting with an external wind. Fluid Dynamics & Materials Processing, 18(2), 329–344. https://doi.org/10.32604/fdmp.2022.017734

Jiang, K., Bai, Y., & Cheng, P. (2023a). Influence analysis of different compaction degrees on the fatigue performance for stranded copper power conductors. Ships and Offshore Structures, 18(11), 1547–1558. https://doi.org/10.1080/17445302.2022.2129912

Jiang, Y., Xu, Z., Fang, D., Zhang, G., Zhi, B., & Wang, B. (2023b). Power line partial discharge detection using multi-scale 1D convolutional neural networks. In 2023 5th International Conference on Power and Energy Technology (ICPET 2023), Tianjin, China. https://doi.org/10.1109/ICPET59380.2023.10367494

Kalombo, R., Martínez, J., Ferreira, J., Da Silva, C., & Araújo, J. (2015). Comparative fatigue resistance of overhead conductors made of aluminium and aluminium alloy: Tests and analysis. Procedia Engineering, 133, 223–232. https://doi.org/10.1016/j.proeng.2015.12.662

Kalombo, R., Araújo, J., Ferreira, J., Da Silva, C., Alencar, R., & Capra, A. (2016). Assessment of the fatigue failure of an All Aluminium Alloy Cable (AAAC) for a 230 kV transmission line in the Center-West of Brazil. Engineering Failure Analysis, 61, 77–87. https://doi.org/10.1016/j.engfailanal.2015.08.043

Kanálik, M., Margitová, A., Urbanský, J., & Beňa, L. (2019). Temperature calculation of overhead power line conductors according to the CIGRE technical brochure 207. In 2019 20th International Scientific Conference on Electric Power Engineering (EPE), Kouty nad Desnou, Czech Republic. IEEE. https://doi.org/10.1109/EPE.2019.8778173

Kandanaarachchi, S., Anantharama, N., & Munoz, M. A. (2020). Early detection of vegetation ignition due to powerline faults. IEEE Transactions on Power Delivery, 36(3), 1324–1334. https://doi.org/10.1109/TPWRD.2020.3006553

Katrasnik, J., Pernus, F., & Likar, B. (2008). New robot for power line inspection. In 2008 IEEE Conference on Robotics, Automation and Mechatronics (pp. 1195–1200), Chengdu, China. IEEE. https://doi.org/10.1109/RAMECH.2008.4681335

Katrasnik, J., Pernus, F., & Likar, B. (2009). A survey of mobile robots for distribution power line inspection. IEEE Transactions on Power Delivery, 25(1), 485–493. https://doi.org/10.1109/TPWRD.2009.2035427

Kayastha, N., Niyato, D., Hossain, E., & Han, Z. (2014). Smart grid sensor data collection, communication, and networking: A tutorial. Wireless Communications and Mobile Computing, 14(11), 1055–1087. https://doi.org/10.1002/wcm.2258

Keyhan, H., McClure, G., & Habashi, W. G. (2013). Dynamic analysis of an overhead transmission line subject to gusty wind loading predicted by wind–conductor interaction. Computers & Structures, 122, 135–144. https://doi.org/10.1016/j.compstruc.2012.12.022

Khan, A. (2020). An analysis of mechanical effects of short circuit on strain bus using finite element approach and validation by modelling an actual strain bus subjected to short circuit tests by comparing computed results with experimental data. In 2020 CIGRE Canada Conference, Toronto, Ontario.

Kikuchi, N., Matsuzaki, Y., Yukino, T., & Ishida, H. (2003). Aerodynamic drag of new-design electric power wire in a heavy rainfall and wind. Journal of Wind Engineering and Industrial Aerodynamics, 91(1–2), 41–51. https://doi.org/10.1016/S0167-6105(02)00334-3

Kim, J., & Hangan, H. (2007). Numerical simulations of impinging jets with application to downbursts. Journal of Wind Engineering and Industrial Aerodynamics, 95(4), 279–298. https://doi.org/10.1016/j.jweia.2006.07.002

Kraus, M., & Hagedorn, P. (1991). Aeolian vibrations: wind energy input evaluated from measurements on an energized transmission line. IEEE Transactions on Power Delivery, 6(3), 1264–1270. https://doi.org/10.1109/61.85875

Kul’kov, V., Sultanov, M., Kuryanov, V., & Sh, N. D. (2021a). Electrical reliability simulation based on analysis of fatigue strength of overhead line wires. In 2021 3rd International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE), Moscow, Russia. IEEE. https://doi.org/10.1109/REEPE51337.2021.9388090

Kul’kov, V., Tyshkevich, V., Kuryanov, V., Sultanov, M., Norov, D. S., Narykova, M., Kadomtsev, A., Prasolov, N., Brunkov, P., & Likhachev, A. (2021b). Experimental studies of fatigue strength and surface electrical resistance of aluminum wire of overhead power transmission lines. Safety and Reliability of Power Industry, 2022(4), 189–195. https://doi.org/10.24223/1999-5555-2021-14-4-189-195

Lai, C.-M., & Teh, J. (2022). Comprehensive review of the dynamic thermal rating system for sustainable electrical power systems. Energy Reports, 8, 3263–3288. https://doi.org/10.1016/j.egyr.2022.02.085

Larrauri, J. I., Sorrosal, G., & González, M. (2013). Automatic system for overhead power line inspection using an unmanned aerial vehicle – RELIFO project. In 2013 International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 244–252), Atlanta, GA, USA. IEEE. https://doi.org/10.1109/ICUAS.2013.6564696

Li, C. (2000). A stochastic model of severe thunderstorms for transmission line design. Probabilistic Engineering Mechanics, 15(4), 359–364. https://doi.org/10.1016/S0266-8920(99)00037-5

Li, W. (2002). Incorporating aging failures in power system reliability evaluation. IEEE Transactions on Power systems, 17(3), 918–923. https://doi.org/10.1109/TPWRS.2002.800989

Li, W. (2004). Evaluating mean life of power system equipment with limited end-of-life failure data. IEEE Transactions on Power Systems, 19(1), 236–242. https://doi.org/10.1109/TPWRS.2003.821434

Li, F., & Brown, R. E. (2004). A cost-effective approach of prioritizing distribution maintenance based on system reliability. IEEE Transactions on Power Delivery, 19(1), 439–441. https://doi.org/10.1109/TPWRD.2003.820411

Li, L., Zhang, Z., & Ningbo, X. (2017). Research on aeolian vibration fatigue life of conductors. In Proceedings of the Second International Conference on Mechanics, Materials and Structural Engineering (ICMMSE 2017). Atlantis Press. https://doi.org/10.2991/icmmse-17.2017.28

Li, S., Song, G., Gao, Y., Zhen, F., Li, C., & Song, A. (2020). Design and implementation of an inspection robot for non-destructive testing of aluminum conductor composite core wires. In 2020 5th International Conference on Advanced Robotics and Mechatronics (ICARM) (pp. 448–453), Shenzhen, China. IEEE. https://doi.org/10.1109/ICARM49381.2020.9195372

Li, M., Hu, J., Yang, Y., Zhao, M., Wang, X., & Jiang, X. (2023). Study on the dynamic characteristics of tensional force for ice accumulated overhead lines considering instantaneous wind speed. Energies, 16(13), Article 4913. https://doi.org/10.3390/en16134913

Liang, S., Zou, L., Wang, D., & Cao, H. (2015). Investigation on wind tunnel tests of a full aeroelastic model of electrical transmission tower-line system. Engineering Structures, 85, 63–72. https://doi.org/10.1016/j.engstruct.2014.11.042

Liu, Y., Xv, J., Yuan, H., Lv, J., & Ma, Z. (2018). Health assessment and prediction of overhead line based on health index. IEEE Transactions on Industrial Electronics, 66(7), 5546–5557. https://doi.org/10.1109/TIE.2018.2868028

Loredo-Souza, A. M., & Davenport, A. (2001). A novel approach for wind tunnel modelling of transmission lines. Journal of Wind Engineering and Industrial Aerodynamics, 89(11–12), 1017–1029. https://doi.org/10.1016/S0167-6105(01)00096-4

Loredo-Souza, A., & Davenport, A. (2002). Wind tunnel aeroelastic studies on the behaviour of two parallel cables. Journal of Wind Engineering and Industrial Aerodynamics, 90(4–5), 407–414. https://doi.org/10.1016/S0167-6105(01)00211-2

Lovrenčič, A., Peter, Z., Lovrenčić, V., & Rizzetto, A. (2022). Inspection of energized aged conductors using non-destructive, in-situ inspection technology. In 2022 13th International Conference on Live Maintenance (ICOLIM), Turin, Italy. IEEE. https://doi.org/10.1109/ICOLIM56184.2022.9840710

Lu, J., Wang, Q., Wang, L., Mei, H., Yang, L., Xu, X., & Li, L. (2019). Study on wind tunnel test and galloping of iced quad bundle conductor. Cold Regions Science and Technology, 160, 273–287. https://doi.org/10.1016/j.coldregions.2018.12.009

Majhi, A. A. K., & Mohanty, S. (2024). A comprehensive review on internet of things applications in power systems. IEEE Internet of Things Journal, 11(21), 34896–34923. https://doi.org/10.1109/JIOT.2024.3447241

Majidi, M., Fadali, M. S., Etezadi-Amoli, M., & Oskuoee, M. (2015). Partial discharge pattern recognition via sparse representation and ANN. IEEE Transactions on Dielectrics and Electrical Insulation, 22(2), 1061–1070. https://doi.org/10.1109/TDEI.2015.7076807

Manurung, A. S., Mustafa, F., & Bayurinaldi, I. (2023). Estimation of compression dead-end clamp temperature to identify hot spot of transmission power line by steady-state heat balance and pitting corrosion. In 2023 4th International Conference on High Voltage Engineering and Power Systems (ICHVEPS) (pp. 567–572), Denpasar Bali, Indonesia. IEEE. https://doi.org/10.1109/ICHVEPS58902.2023.10257535

Matikainen, L., Lehtomäki, M., Ahokas, E., Hyyppä, J., Karjalainen, M., Jaakkola, A., Kukko, A., & Heinonen, T. (2016). Remote sensing methods for power line corridor surveys. ISPRS Journal of Photogrammetry and Remote Sensing, 119, 10–31. https://doi.org/10.1016/j.isprsjprs.2016.04.011

Matsumiya, H., Nishihara, T., & Yagi, T. (2018). Aerodynamic modeling for large-amplitude galloping of four-bundled conductors. Journal of Fluids and Structures, 82, 559–576. https://doi.org/10.1016/j.jfluidstructs.2018.08.003

Meynen, S., Verma, H., Hagedorn, P., & Schäfer, M. (2005). On the numerical simulation of vortex-induced vibrations of oscillating conductors. Journal of Fluids and Structures, 21(1), 41–48. https://doi.org/10.1016/j.jfluidstructs.2005.05.019

Molina Gómez, A. (2020). Improved planning of wind farms using dynamic transformer rating [Master’s thesis]. KTH, School of Electrical Engineering and Computer Science.

Montambault, S., & Pouliot, N. (2003). The HQ LineROVer: contributing to innovation in transmission line maintenance. In 2003 IEEE 10th International Conference on Transmission and Distribution Construction, Operation and Live-Line Maintenance (IEEE ESMO) (pp. 33–40), Orlando, FL, USA. IEEE. https://doi.org/10.1109/TDCLLM.2003.1196466

Morgan, V. T. (1996). Effect of elevated temperature operation on the tensile strength of overhead conductors. IEEE Transactions on Power Delivery, 11(1), 345–352. https://doi.org/10.1109/61.484034

Naranpanawe, L., Ma, H., & Saha, T. (2018). Overhead conductor condition monitoring. Milestone report 1. The University of Queensland, Australia.

Naranpanawe, L., Ma, H., Saha, T. K., Lee, C., & Ghosal, A. (2020). A practical health index for overhead conductors: experience from Australian distribution networks. IEEE Access, 8, 218863–218873. https://doi.org/10.1109/ACCESS.2020.3042486

Nguyen, V. N., Jenssen, R., & Roverso, D. (2018). Automatic autonomous vision-based power line inspection: A review of current status and the potential role of deep learning. International Journal of Electrical Power & Energy Systems, 99, 107–120. https://doi.org/10.1016/j.ijepes.2017.12.016

Nguyen, V. N., Jenssen, R., & Roverso, D. (2019). Intelligent monitoring and inspection of power line components powered by UAVs and deep learning. IEEE Power and Energy Technology Systems Journal, 6(1), 11–21. https://doi.org/10.1109/JPETS.2018.2881429

Noiseux, D., Houle, S., & Beauchemin, R. (1988). Transformation of wind tunnel data on aeolian vibrations for application to random conductor vibrations in a turbulent wind. IEEE Transactions on Power Delivery, 3(1), 265–271. https://doi.org/10.1109/61.4254

Omrani, A., Langlois, S., Van Dyke, P., Lalonde, S., Karganroudi, S. S., & Dieng, L. (2021). Fretting fatigue life assessment of overhead conductors using a clamp/conductor numerical model and biaxial fretting fatigue tests on individual wires. Fatigue & Fracture of Engineering Materials & Structures, 44(6), 1498–1514. https://doi.org/10.1111/ffe.13444

Padhi, C. K., Panda, S., & Biswal, G. R. (2021). Optimal recharging of EVs for peak power shaving and valley filling using EV-aggregator model in a micro-grid. Journal of Physics: Conference Series, 1854, Article 012016. https://doi.org/10.1088/1742-6596/1854/1/012016

Pagnano, A., Höpf, M., & Teti, R. (2013). A roadmap for automated power line inspection. Maintenance and repair. Procedia Cirp, 12, 234–239. https://doi.org/10.1016/j.procir.2013.09.041

Papailiou, K. O. (2017). Overhead lines. Springer. https://doi.org/10.1007/978-3-319-31747-2

Pereira, M., & Pinto, L. (1992). A new computational tool for composite reliability evaluation. IEEE Transactions on Power Systems, 7(1), 258–264. https://doi.org/10.1109/59.141712

Petzold, F., Schlapp, H., Gulski, E., Seitz, P. P., & Quak, B. (2008). Advanced solution for on-site diagnosis of distribution power cables. IEEE Transactions on Dielectrics and Electrical Insulation, 15(6), 1584–1589. https://doi.org/10.1109/TDEI.2008.4712661

Pinto, A. V., Sebrao, M. Z., Lourenco, C. R. S., de Almeida, I. S. A., Saad, J., & Lourenco, P. M. (2010). Remote detection of internal corrosion in conductor cables of power transmission lines. In 2010 1st International Conference on Applied Robotics for the Power Industry, Montreal, QC, Canada. IEEE. https://doi.org/10.1109/CARPI.2010.5624453

Popova, K., & Prošek, T. (2022). Corrosion monitoring in atmospheric conditions: a review. Metals, 12(2), Article 171. https://doi.org/10.3390/met12020171

Pouliot, N., & Montambault, S. (2008). Geometric design of the LineScout, a teleoperated robot for power line inspection and maintenance. In 2008 IEEE International Conference on Robotics and Automation (pp. 3970–3977), Pasadena, CA, USA. IEEE. https://doi.org/10.1109/ROBOT.2008.4543821

Pouliot, N., Mussard, D., & Montambault, S. (2012). Localization and archiving of inspection data collected on power lines using LineScout technology. In 2012 2nd International Conference on Applied Robotics for the Power Industry (CARPI) (pp. 197–202), Zurich, Switzerland. IEEE. https://doi.org/10.1109/CARPI.2012.6473341

Pouliot, N., Richard, P.-L., & Montambault, S. (2015). LineScout technology opens the way to robotic inspection and maintenance of high-voltage power lines. IEEE Power and Energy Technology Systems Journal, 2(1), 1–11. https://doi.org/10.1109/JPETS.2015.2395388

Qi, Y., Rui, X., Ji, K., Liu, C., & Zhou, C. (2019). Study on aeolian vibration suppression schemes for large crossing span of ultra-high-voltage eight-bundle conductors. Advances in Mechanical Engineering, 11(4), Article 1687814019842706. https://doi.org/10.1177/1687814019842706

Rácz, L., & Németh, B. (2021). Dynamic line rating – An effective method to increase the safety of power lines. Applied Sciences, 11(2), Article 492. https://doi.org/10.3390/app11020492

Rácz, L., & Németh, B. (2022). A novel concept of dynamic line rating systems based on soft computing models. In 2022 10th International Conference on Smart Grid (icSmartGrid) (pp. 131–136), Istanbul, Turkey. IEEE. https://doi.org/10.1109/icSmartGrid55722.2022.9848683

Rajan, J. S., & Rudranna, N. (2013). Electric stress distribution in paper oil insulation due to sulphur corrosion of copper conductors. Journal of Electrostatics, 71(3), 429–434. https://doi.org/10.1016/j.elstat.2012.12.025

Rajeev, P., Bandara, S., Gad, E., & Shan, J. (2022). Structural assessment techniques for in-service crossarms in power distribution Networks. Infrastructures, 7(7), Article 94. https://doi.org/10.3390/infrastructures7070094

Rawlins, C. (1983). Wind tunnel measurements of the power imparted to a model of a vibrating conductor. IEEE Transactions on Power Apparatus and Systems, PAS-102(4), 963–971. https://doi.org/10.1109/TPAS.1983.317810

Reinke, G., Badibanga, R. K., Pestana, M. S., de Almeida Ferreira, J. L., Araujo, J. A., & da Silva, C. R. M. (2020). Failure analysis of aluminum wires in all aluminum alloy conductors-AAAC. Engineering Failure Analysis, 107, Article 104197. https://doi.org/10.1016/j.engfailanal.2019.104197

Rivas, J., Boya-Lara, C., & Poveda, H. (2022). Partial discharge detection in power lines using automated machine learning. In 2022 8th International Engineering, Sciences and Technology Conference (IESTEC) (pp. 223–230), Panama, Panama. IEEE. https://doi.org/10.1109/IESTEC54539.2022.00041

Rocha, P., Langlois, S., Lalonde, S., Araújo, J., & Castro, F. (2022). A general life estimation method for overhead conductors based on fretting fatigue behavior of wires. Theoretical and Applied Fracture Mechanics, 121, Article 103443. https://doi.org/10.1016/j.tafmec.2022.103443

Roncolatto, R., Romanelli, N., Hirakawa, A., Horikawa, O., Vieira, D., Yamamoto, R., Finotto, V., Sverzuti, V., & Lopes, I. (2010). Robotics applied to work conditions improvement in power distribution lines maintenance. In 2010 1st International Conference on Applied Robotics for the Power Industry, Montreal, QC, Canada. IEEE. https://doi.org/10.1109/CARPI.2010.5624436

Rossi, A., Jubayer, C., Koss, H., Arriaga, D., & Hangan, H. (2020). Combined effects of wind and atmospheric icing on overhead transmission lines. Journal of Wind Engineering and Industrial Aerodynamics, 204, Article 104271. https://doi.org/10.1016/j.jweia.2020.104271

Said, J., Garcin, S., Fouvry, S., Cailletaud, G., Yang, C., & Hafid, F. (2020). A multi-scale strategy to predict fretting-fatigue endurance of overhead conductors. Tribology International, 143, Article 106053. https://doi.org/10.1016/j.triboint.2019.106053

Sankarakrishnan, A., & Billinton, R. (1995). Sequential Monte Carlo simulation for composite power system reliability analysis with time varying loads. IEEE Transactions on Power Systems, 10(3), 1540–1545. https://doi.org/10.1109/59.466491

Sayarshad, H. R., & Ghorbanloo, R. (2023). Evaluating the resilience of electrical power line outages caused by wildfires. Reliability Engineering & System Safety, 240, Article 109588. https://doi.org/10.1016/j.ress.2023.109588

Shan, L., Jenke, L., & Cannon Jr, D. (1992). Field determination of conductor drag coefficients. Journal of Wind Engineering and Industrial Aerodynamics, 41(1–3), 835–846. https://doi.org/10.1016/0167-6105(92)90504-4

Shehata, A., El Damatty, A., & Savory, E. (2005). Finite element modeling of transmission line under downburst wind loading. Finite Elements in Analysis and Design, 42(1), 71–89. https://doi.org/10.1016/j.finel.2005.05.005

Srivastav, A., Sagar, R., Malik, M. A., & Vishwanath, M. (2021). Mechanism, design and kinematics for a transmission line inspection robot. In 2021 2nd International Conference for Emerging Technology (INCET), Belagavi, India. IEEE. https://doi.org/10.1109/INCET51464.2021.9456243

Standards Australia. (1989). Conductors – Bare overhead, aluminium and aluminium alloy – Steel reinforced (AS 3607-1989). Australian standard.

Standards Australia. (1991a). Conductors – Bare overhead – Hard-drawn copper (AS 1746-1991). Australian standard.

Standards Australia. (1991b). Conductors – Bare overhead – Aluminium and sluminium alloy (AS 1531-1991). Australian standard.

Standards Australia. (1992a). Steel conductors and stays – Bare overhead, Part 1: Galvanized (SC/GZ) (AS 1222.1-1992). Australian standard.

Standards Australia. (1992b). Steel conductors and stays – Bare overhead, Part 2: Aluminium clad (SC/AC) (AS 1222.2-1992). Australian standard.

Standards Australia, & Standards New Zealand. (2000). Electrical cables – Cross-linked polythene insulated – Aerial bundled – For working voltages up to and including 0.6/1 (1.2) kV- Part 1: Aluminium conductors (AS/NZS 3560.1:2000). Australian/New Zealand standard.

Standards Australia, & Standards New Zealand. (2002). Conductors – Covered overhead – For working voltages 6.35/11 (12) kV up to and including 19/33 (36) kV (AS/NZS 3675:2002). Australian/New Zealand standard.

Standards Australia, & Standards New Zealand. (2003). Structural design actions, Part 3: Snow and ice actions (AS/NZS 1170.3:2003). Australian/New Zealand standard.

Standards Australia, & Standards New Zealand. (2016). Overhead line design (AS/NZS 7000:2016). Australian/New Zealand standard.

Standards Australia, & Standards New Zealand. (2021). Structural design actions, Part 2: Wind actions (AS/NZS 1170.2:2021). Australian/New Zealand standard.

Steennis, F., Wagenaars, P., van der Wielen, P., Wouters, P., Li, Y., Broersma, T., Harmsen, D., & Bleeker, P. (2016). Guarding MV cables on-line: With travelling wave based temperature monitoring, fault location, PD location and PD related remaining life aspects. IEEE Transactions on Dielectrics and Electrical Insulation, 23(3), 1562–1569. https://doi.org/10.1109/TDEI.2016.005566

Stephen, R., & Iglesias, J. (2023). Phase/pole configuration, conductor and hardware. In R. Stephen, & J. Iglesias (Eds.), Compact overhead line design. CIGRE green books (pp. 53–101). Springer, Cham. https://doi.org/10.1007/978-3-031-44524-8_4

Stockton, G. R., & Tache, A. (2006). Advances in applications for aerial infrared thermography. In Proceedings of Thermosense XXVIII (Vol. 6205), Orlando, FL, USA. https://doi.org/10.1117/12.669513

Su, Y., & Teh, J. (2022). Two-stage optimal dispatching of AC/DC hybrid active distribution systems considering network flexibility. Journal of Modern Power Systems and Clean Energy, 11(1), 52–65. https://doi.org/10.35833/MPCE.2022.000424

Su, Y., Teh, J., & Chen, C. (2023a). Optimal dispatching for AC/DC hybrid distribution systems with electric vehicles: Application of cloud-edge-device cooperation. IEEE Transactions on Intelligent Transportation Systems, 25(3), 3128–3139. https://doi.org/10.1109/TITS.2023.3314571

Su, Y., Teh, J., & Liu, W. (2023b). Hierarchical and distributed energy management framework for AC/DC hybrid distribution systems with massive dispatchable resources. Electric Power Systems Research, 225, Article 109856. https://doi.org/10.1016/j.epsr.2023.109856

Sun, P., Li, G., Town, G., & Konstantinou, G. (2022). Identifying opportunities for medium voltage DC systems in Australia. In 2022 IEEE PES 14th Asia-Pacific Power and Energy Engineering Conference (APPEEC), Melbourne, Australia. IEEE. https://doi.org/10.1109/APPEEC53445.2022.10072035

Suryadevara, N. K., & Biswal, G. R. (2019). Smart plugs: Paradigms and applications in the smart city-and-smart grid. Energies, 12(10), Article 1957. https://doi.org/10.3390/en12101957

Tasmanian Networks. (2015). Tasmanian Networks Pty Ltd annual report 2014–15. https://www.tasnetworks.com.au

Teh, J., Lai, C.-M., & Cheng, Y.-H. (2017). Impact of the real-time thermal loading on the bulk electric system reliability. IEEE Transactions on Reliability, 66(4), 1110–1119. https://doi.org/10.1109/TR.2017.2740158

Than, T. T. M. (2022). Research and development process in replacing aluminum conductor steel reinforced cable [Bachelor’s thesis]. HAMK, Finland.

Thomas, O. O., Chouinard, L., & Langlois, S. (2022). Probabilistic fatigue fragility curves for overhead transmission line conductor-clamp assemblies. Frontiers in Built Environment, 8, Article 833167. https://doi.org/10.3389/fbuil.2022.833167

Ubeda, J. R., & Allan, R. (1992). Sequential simulation applied to composite system reliability evaluation. IEE Proceedings C (Generation, Transmission and Distribution), 139(2), 81–86. https://doi.org/10.1049/ip-c.1992.0014

van Deursen, A., Wouters, P., & Steennis, F. (2019). Corrosion in low-voltage distribution networks and perspectives for online condition monitoring. IEEE Transactions on Power Delivery, 34(4), 1423–1431. https://doi.org/10.1109/TPWRD.2019.2903730

Vargel, C. (2020). Corrosion of aluminium. Elsevier. https://doi.org/10.1016/B978-0-08-099925-8.00008-9

Vasquez, W. A., Jayaweera, D., & Játiva-Ibarra, J. (2017). End-of-life failure modelling of overhead lines considering loading and weather effects. In 2019 IEEE International Conference on Power, Electrical, and Electronics and Industrial Applications (PEEIACON), Torino, Italy. IEEE. https://doi.org/10.1109/ISGTEurope.2017.8260134

Velásquez, R. A., & Lara, J. M. (2016). Robot unit for cost and time balance using automatic inspection on overhead lines. In 2016 IEEE ANDESCON, Arequipa, Peru. IEEE. https://doi.org/10.1109/ANDESCON.2016.7836194

Velásquez, R. M. A., & Lara, J. V. M. (2018). Methodology for overhead line conductor remaining life aging infrastructure and asset management. In 2018 IEEE PES Transmission & Distribution Conference and Exhibition-Latin America (T&D-LA), Lima, Peru. IEEE. https://doi.org/10.1109/TDC-LA.2018.8511752

Vemula, S., & Frye, M. (2020). Real-time powerline detection system for an unmanned aircraft system. In 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 4493–4497), Toronto, ON, Canada. IEEE. https://doi.org/10.1109/SMC42975.2020.9283354

Venkatesh, D., Swankg, E. S., Valarmathi, R., & Uma, R. (2020). PD pattern recognition on transmission lines using tree-based models. In 2020 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS), Chennai, India. IEEE. https://doi.org/10.1109/ICPECTS49113.2020.9336980

Wakahama, G., Kuroiwa, D., & Gotō, K. (1977). Snow accretion on electric wires and its prevention. Journal of Glaciology, 19(81), 479–487. https://doi.org/10.3189/S0022143000215682

Wang, L. (2016). The fault causes of overhead lines in distribution network. MATEC Web of Conferences, 61, Article 02017. https://doi.org/10.1051/matecconf/20166102017

Wang, Y., Chen, C.-F., Kong, P.-Y., Li, H., & Wen, Q. (2022). A cyber–physical–social perspective on future smart distribution systems. Proceedings of the IEEE, 111(7), 694–724. https://doi.org/10.1109/JPROC.2022.3192535

Wang, F., Song, G., Mao, J., Li, Y., Ji, Z., Chen, D., & Song, A. (2023). Internal defect detection of overhead aluminum conductor composite core transmission lines with an inspection robot and computer vision. IEEE Transactions on Instrumentation and Measurement, 72, Article 3512516. https://doi.org/10.1109/TIM.2023.3265104

Wardlaw, R., Cooper, K., Ko, R., & Watts, J. (1975). Wind tunnel and analytical investigations into the aeroelastic behaviour of bundled conductors. IEEE Transactions on Power Apparatus and Systems, 94(2), 642–654. https://doi.org/10.1109/T-PAS.1975.31892

Western Power. (2021). State of the energy market 2020/21. https://www.westernpower.com.au

Whapham, R. (2012). Aeolian vibration of conductors: Theory, laboratory simulation & field measurement. In Electrical Transmission and Substation Structures 2012: Solutions to Building the Grid of Tomorrow (pp. 262–274). https://doi.org/10.1061/9780784412657.023

Wild, M., Tenbohlen, S., Gulski, E., Jongen, R., & De Vries, F. (2013). Practical aspects of PD localization for long length power cables. In 2013 IEEE Electrical Insulation Conference (EIC) (pp. 499–503), Ottawa, ON, Canada. IEEE. https://doi.org/10.1109/EIC.2013.6554298

Wong, K., Marxsen, T., Liang, M., & Chahal, J. (2019). A novel autonomous technique for early fault detection on overhead power lines. In 2019 IEEE 4th International Conference on Condition Assessment Techniques in Electrical Systems (CATCON), Chennai, India. IEEE. https://doi.org/10.1109/CATCON47128.2019.CN0027

Wood, G. S., Kwok, K. C., Motteram, N. A., & Fletcher, D. F. (2001). Physical and numerical modelling of thunderstorm downbursts. Journal of Wind Engineering and Industrial Aerodynamics, 89(6), 535–552. https://doi.org/10.1016/S0167-6105(00)00090-8

Xiao, X., Wu, G., & Li, S. (2007). Dynamic coupling simulation of a power transmission line inspection robot with its flexible moving path when overcoming obstacles. In 2007 IEEE International Conference on Automation Science and Engineering (pp. 326–331), Scottsdale, AZ, USA. IEEE. https://doi.org/10.1109/COASE.2007.4341691

Xie, Q., Cai, Y., & Xue, S. (2017). Wind-induced vibration of UHV transmission tower line system: Wind tunnel test on aero-elastic model. Journal of Wind Engineering and Industrial Aerodynamics, 171, 219–229. https://doi.org/10.1016/j.jweia.2017.10.011

Xie, Q., He, C., Yang, Z., & Xue, S. (2019). Influence of flexible conductors on the seismic responses of interconnected electrical equipment. Engineering Structures, 191, 148–161. https://doi.org/10.1016/j.engstruct.2019.04.050

Xin-min, L., Xiao-chun, N., Yong-kun, Z., Yi, Y., & Zhi-tao, Y. (2017). Wind tunnel tests on aerodynamic characteristics of ice-coated 4-bundled conductors. Mathematical Problems in Engineering, 2017, Article 1628173. https://doi.org/10.1155/2017/1628173

Yan, B., Liu, X., Lv, X., & Zhou, L. (2016). Investigation into galloping characteristics of iced quad bundle conductors. Journal of Vibration and Control, 22(4), 965–987. https://doi.org/10.1177/1077546314538479

Yang, L., & Teh, J. (2023). Review on vulnerability analysis of power distribution network. Electric Power Systems Research, 224, Article 109741. https://doi.org/10.1016/j.epsr.2023.109741

Yang, L., Teh, J., & Alharbi, B. (2024). Optimizing distributed generation and energy storage in distribution networks: Harnessing metaheuristic algorithms with dynamic thermal rating technology. Journal of Energy Storage, 91, Article 111989. https://doi.org/10.1016/j.est.2024.111989

Yao, K., Yano, H., Tadano, H., & Iwamuro, N. (2020). Investigations of SiC MOSFET short-circuit failure mechanisms using electrical, thermal, and mechanical stress analyses. IEEE Transactions on Electron Devices, 67(10), 4328–4334. https://doi.org/10.1109/TED.2020.3013192

Yaqoob, Y., Marzuki, A., Lai, C.-M., & Teh, J. (2022). Fuzzy dynamic thermal rating system-based thermal aging model for transmission lines. Energies, 15(12), Article 4395. https://doi.org/10.3390/en15124395

Zainuddin, N. M., Rahman, M. A., Kadir, M. A., Ali, N. N., Ali, Z., Osman, M., Mansor, M., Ariffin, A. M., Rahman, M. S. A., & Nor, S. (2020). Review of thermal stress and condition monitoring technologies for overhead transmission lines: Issues and challenges. IEEE Access, 8, 120053–120081. https://doi.org/10.1109/ACCESS.2020.3004578

Zhang, X., Pang, B., Liu, Y., Liu, S., Xu, P., Li, Y., Liu, Y., Qi, L., & Xie, Q. (2021). Review on detection and analysis of partial discharge along power cables. Energies, 14(22), Article 7692. https://doi.org/10.1016/j.jweia.2014.10.020

Zhao, S., Zhang, C., Dai, X., & Yan, Z. (2023). Review of wind-induced effects estimation through nonlinear analysis of tall buildings, high-rise structures, flexible bridges and transmission lines. Buildings, 13(8), Article 2033. https://doi.org/10.3390/buildings13082033

Zheng, X., Jia, R., Gong, L., Zhang, G., & Dang, J. (2021). Component identification and defect detection in transmission lines based on deep learning. Journal of Intelligent & Fuzzy Systems, 40(2), 3147–3158. https://doi.org/10.3233/JIFS-189353

Zhou, F., Wang, J., Li, Y., Wang, J., & Xiao, H. (2005). Control of an inspection robot for 110KV power transmission lines based on expert system design methods. In Proceedings of 2005 IEEE Conference on Control Applications (CCA 2005) (pp. 1563–1568), Toronto, ON, Canada. IEEE. https://doi.org/10.1109/CCA.2005.1507355

Zhou, L., Yan, B., Zhang, L., & Zhou, S. (2016). Study on galloping behavior of iced eight bundle conductor transmission lines. Journal of Sound and Vibration, 362, 85–110. https://doi.org/10.1016/j.jsv.2015.09.046

Zhu, Z., Lu, S., Gao, B., Yi, T., & Chen, B. (2016). Life cycle cost analysis of three types of power lines in 10 kV distribution network. Inventions, 1(4), Article 20. https://doi.org/10.3390/inventions1040020