Share:


The seasonal change of water quality parameters and ecological condition of some surface water bodies in the Nemunas River basin

    Jolita Bradulienė Affiliation
    ; Vaidotas Vaišis Affiliation
    ; Rasa Vaiškūnaitė Affiliation

Abstract

The surface water quality analysis is very important in order to identify potential sources of contamination. The pollution of surface water can occur because of unauthorized discharge of a variety of materials or pollutants, and cultivated fields from which migratory pollutants are carried into the water bodies by melting snow. The current paper presents the results of quality indicators’ analysis (oxygen saturation (dissolved oxygen) (mg O2/l); an active water reaction, pH; suspended solids (mg/l); biochemical oxygen demand BOD7 (mg O2/l); phosphate (mgP/l); nitrite (mgN/l); nitrate (mgN/l); ammonium (mgN/l); total phosphorus (mgP/l); total nitrogen (mgN/l); colour (mg/l Pt)) of some surface water bodies (the Dubysa, Reizgupis, Vilkupis, Kriokle Rivers and Prabaudos pond) in the Nemunas River basin. The research demonstrated that the majority of non-compliances and exceedances with values and the maximum allowable concentrations stated in the hygiene norms can be found in the Reizgupis River. According to the analyzed surface water quality indicators, the ecological conditions of the surface water bodies were determined.

Keyword : surface water, water quality, rivers, pond, ecological condition

How to Cite
Bradulienė, J., Vaišis, V., & Vaiškūnaitė, R. (2024). The seasonal change of water quality parameters and ecological condition of some surface water bodies in the Nemunas River basin. Journal of Environmental Engineering and Landscape Management, 32(4), 241–254. https://doi.org/10.3846/jeelm.2024.22360
Published in Issue
Oct 4, 2024
Abstract Views
214
PDF Downloads
196
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

An, W. C., & Li, X. M. (2009). Phosphate adsorption characteristics at the sediment–water interface and phosphorus fractions in Nansi Lake, China, and its main inflow rivers. Environmental Monitoring and Assessment, 148(1–4), 173–184. https://doi.org/10.1007/s10661-007-0149-6

Badiou, P., Page, B., & Ross, L. (2019). A comparison of water quality and greenhouse gas emissions in constructed wetlands and conventional retention basins with and without submerged macrophyte management for storm water regulation. Ecological Engineering, 17, 292–301. https://doi.org/10.1016/j.ecoleng.2018.11.028

Bagdžiūnaitė-Litvinaitienė, L. (2004). Change dynamics of biogenic matter in river waters of southeast Lithuania during periods of different wateriness. Journal of Environmental Engineering and Landscape Management, 12(4), 146–152. https://doi.org/10.3846/16486897.2004.9636836

Bagdžiūnaitė-Litvinaitienė, L., Litvinaitis, A., & Šaulys, V. (2011). Patterns of river runoff change considering the size of the basin. Journal of Environmental Engineering and Landscape Management, 19(4), 326–334. https://doi.org/10.3846/16486897.2011.634057

Baurès, E., Delpla, I., Merel, S., Thomas, M.-F., Jung, A.-V., & Thomas, O. (2013). Variation of organic carbon and nitrate with river flow within an oceanic regime in a rural area and potential impacts for drinking water production. Journal of Hydrology, 477, 86–93. https://doi.org/10.1016/j.jhydrol.2012.11.006

Chandio, A. A., Jiang, Y., Rehman, A., & Rauf, A. (2020). Short and long-run impacts of climate change on agriculture: An empirical evidence from China. International Journal of Climate Change Strategies and Management, 12(2), 201–221. https://doi.org/10.1108/IJCCSM-05-2019-0026

Ferreira, C. S. S., Soares, D., Ferreira, A. J. D., Costa, M. L., Steenhuis, T. S., Coelho, C. O. A., & Walsh, R. P. D. (2012, April 22–27). Urban areas impact on surface water quality during rainfall events [Paper presentation]. EGU General Assembly 2012, Vien­na, Austria.

Floury, M., Delattre, C., Ormerod, S. J., & Souchon, Y. (2012). Global versus local change effects on a large European river. Science of the Total Environment, 441, 220–229. https://doi.org/10.1016/j.scitotenv.2012.09.051

Horowitz, A. J. (2013). A review of selected inorganic surface water quality-monitoring practices: Are we really measuring what we think, and if so, are we doing it right? Environmental Science & Technology, 47, 2471–2486. https://doi.org/10.1021/es304058q

Kaushal, S. S., Likens, G. E., Jaworski, N. A., Pace, M. L., Sides, A. M., Seekell, D., Belt, K. T., Secor, D. H., & Wingate, R. L. (2010). Rising stream and river temperatures in the United States. Frontiers in Ecology and the Environment, 8(9), 461–466. https://doi.org/10.1890/090037

Kilkus, K., & Stonevičius, E. (2011). Lietuvos vandenų geografija. Vilniaus universitetas.

Kroon, F. J., Kuhnert, P. M., Henderson, B. L., Wilkinson, S. N., Kinsey-Henderson, A., Abbott, B., Brodie, J. E., & Turner, R. D. R. (2012). River loads of suspended solids, nitrogen, phosphorus and herbicides delivered to the Great Barrier Reef lagoon. Marine Pollution Bulletin, 65(4–9), 167–181. https://doi.org/10.1016/j.marpolbul.2011.10.018

Kumar, A., Mishra, S., Bakshi, S., Upadhyay, P., & Thakur, T. K. (2023). Response of eutrophication and water quality drivers on greenhouse gas emissions in lakes of China: A critical analysis. Ecohydrology, 16(1), Article 2483. https://doi.org/10.1002/eco.2483

Marcinkonis, S., Karmaza, B., & Booth, C. A. (2012). Geochemistry of freshwater calcareous sediments and longevity impacts of their application to acidic soils of eastern Lithuania. Journal of Environmental Engineering and Landscape Management, 20(4), 285–291. https://doi.org/10.3846/16486897.2012.656646

Null, S. E., Viers, J. H., Deas, M. L., Tanaka, S. K., & Mount, J. F. (2013). Stream temperature sensitivity to climate warming in California’s Sierra Nevada: Impacts to coldwater habitat. Climatic Change, 116(1), 149–170. https://doi.org/10.1007/s10584-012-0459-8

Patoine, M., Hébert, S., & D’Auteuil-Potvin, F. (2012). Water quality trends in the last decade for ten watersheds dominated by diffuse pollution in Québec (Canada). Water Science & Technology, 65(6), 1095–1101. https://doi.org/10.2166/wst.2012.850

Saghravani, S. R., Mustapha, S., Ibrahim, S., Yusoff, M. K., & Saghravani, S. F. (2011). Phosphorus migration in an unconfined aquifer using Modflow and Mt3dms. Journal of Environmental Engineering and Landscape Management, 19(4), 271–277. https://doi.org/10.3846/16486897.2011.634053

Sakalauskienė, G., Valatka, S., & Virbickas, T. (2002). Nuotekų įtaka paviršinių vandenų kokybei bei upių klasifikacija į „lašišinius“ ir „karpinius“ vandenis [Waste water impact to the surface water quality and rivers’ classification to “salmonid” and “cyprinid” waters]. Aplinkos tyrimai, inžinerija ir vadyba, 2(20), 3–10.

Simon, F. X., Penru, Y., Guastalli, A. R., Llorens, J., & Baig, S. (2011). Improvement of the analysis of the biochemical oxygen demand (BOD) of Mediterranean seawater by seeding control. Talanta, 85, 527–532. https://doi.org/10.1016/j.talanta.2011.04.032

Sloat, M. R., Osterback, A.-M. K., & Magnan, P. (2013). Maximum stream temperature and the occurrence, abundance, and behavior of steelhead trout (Oncorhynchus mykiss) in a southern California stream. Canadian Journal of Fisheries and Aquatic Sciences 70(1), 64–73. https://doi.org/10.1139/cjfas-2012-0228

Wolfe, J. R. (2012). The effect of wet weather driven dissolved oxygen sags on fishes in urban systems (WERF Report No. U3R09). WERF. https://doi.org/10.2166/9781780401270

Yamakado, Y. (2012). A study on variability characteristic of water quality in tidal area of urban river. Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering), 67(4), I 1669–I 1674. https://doi.org/10.2208/jscejhe.67.I_1669

Zou, X.-Y., Peng, X.-Y., Zhao, X.-X., & Chang, C.-P. (2023). The impact of extreme weather events on water quality: International evidence. Natural Hazards, 115, 1–21. https://doi.org/10.1007/s11069-022-05548-9