GIS based ground water assessment of Nilakkottai Taluk, Tamil Nadu, India: hydrogeochemistry and statistical perspective
Abstract
Water quality is imperative for drinking and agriculture purposes in order to meet the increasing requirements for water. The systematic assessment of groundwater quality in Nilakkottai Taluk, Dindigul District, Tamil Nadu, was performed. In order to ascertain the quality of the study area’s groundwater, various water quality indices, spatial distribution maps, multivariate statistical analysis, and hydrofacies diagrams have been contemplated. 40 samples were collected and analysed for 20 water quality parameters, using the standard techniques. The quality results of the irrigation analysis showed that the groundwater samples were satisfactory for agricultural use. The deduction of four principal components denotes that hydrogeochemical processes and anthropogenic inputs were the main controlling factors. The durov plot demonstrated the dominance of Ca-HCO3 type groundwater, indicating a weathering process through fresh water recharge. This study insisted that majority of the samples satisfactory for crop yield and need to be protected from further contamination.
Keyword : WQI, GIS, PCA, CA, Durov
![Creative Commons License](http://i.creativecommons.org/l/by/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Abou Zakhem, B., Al-Charideh, A., & Kattaa, B. (2017). Using principal component analysis in the investigation of groundwater hydrochemistry of Upper Jezireh Basin, Syria. Hydrological Sciences Journal, 62(14), 2266–2279. https://doi.org/10.1080/02626667.2017.1364845
Adimalla, N. (2020). Controlling factors and mechanism of groundwater quality variation in semiarid region of South India: An approach of water quality index (WQI) and health risk assessment (HRA). Environmental Geochemistry and Health, 42(6), 1725–1752. https://doi.org/10.1007/s10653-019-00374-8
Adimalla, N., & Taloor, A. K. (2020). Hydrogeochemical investigation of groundwater quality in the hard rock terrain of South India using Geographic Information System (GIS) and groundwater quality index (GWQI) techniques. Groundwater for Sustainable Development, 10, Article 100288. https://doi.org/10.1016/j.gsd.2019.100288
Alfarrah, N., & Walraevens, K. (2018). Groundwater overexploitation and seawater intrusion in coastal areas of arid and semi-arid regions. Water, 10(2), Article 143. https://doi.org/10.3390/w10020143
Alharbi, T. G. (2018). Identification of hydrogeochemical processes and their influence on groundwater quality for drinking and agricultural usage in Wadi Nisah, Central Saudi Arabia. Arabian Journal of Geosciences, 11(13), Article 359. https://doi.org/10.1007/s12517-018-3679-z
American Public Health Association. (2005). Standard methods for the examination of water and wastewater (21st ed.). American Public Health Association, American Water Works Association, Water Environment Federation.
Amrani, S., Hinaje, S., & Gharmane, Y. (2020). Application des méthodes paramétriques (drastic et si) pour l’étude de la vulnérabilité à la pollution potentielle par les nitrates de la nappe d’eau superficielle de Timahdite-Almis Guigou (Moyen Atlas, Maroc). Revue Des Sciences De L’Eau, 32(3), 237–252. https://doi.org/10.7202/1067307ar
Aouissi, H. A., Ababsa, M., Gaagai, A., Bouslama, Z., Farhi, Y., & Chenchouni, H. (2021). Does melanin-based plumage coloration reflect health status of free-living birds in urban environments? Avian Research, 12(1), Article 45. https://doi.org/10.1186/s40657-021-00280-7
Bawoke, G. T., & Anteneh, Z. L. (2020). Spatial assessment and appraisal of groundwater suitability for drinking consumption in Andasa watershed using water quality index (WQI) and GIS techniques: Blue Nile Basin, Northwestern Ethiopia. Cogent Engineering, 7(1), Article 1748950. https://doi.org/10.1080/23311916.2020.1748950
Belkhiri, L., Boudoukha, A., Mouni, L., & Baouz, T. (2010). Application of multivariate statistical methods and inverse geochemical modeling for characterization of groundwater – A case study: Ain Azel plain (Algeria). Geoderma, 159(3–4), 390–398. https://doi.org/10.1016/j.geoderma.2010.08.016
Bhunia, G. S., Keshavarzi, A., Shit, P. K., Omran, E. E., & Bagherzadeh, A. (2018). Evaluation of groundwater quality and its suitability for drinking and irrigation using GIS and geostatistics techniques in semiarid region of Neyshabur, Iran. International Journal of Energy and Water Resources, 8(6), Article 168. https://doi.org/10.1007/s13201-018-0795-6
Colins Johnny, J., & Sashikkumar, M. C. (2014). Groundwater quality assessment in Dindigul district, Tamil Nadu using GIS. Nature Environment and Pollution Technology, 13(1), 49–56. https://neptjournal.com/upload-images/NL-47-10-8-J13(1).pdf
Dhakate, R., More, S., Duvva, L. K., & Enjamuri, S. (2023). Groundwater chemistry and health hazard risk valuation of fluoride and nitrate enhanced groundwater from a semi-urban region of South India. Environemental Science and Pollution Research, 30, 43554–43572. https://doi.org/10.1007/s11356-023-25287-z
Din, I. U., Muhammad, S., & Rehman, I. u. (2023). Groundwater quality assessment for drinking and irrigation purposes in the Hangu District, Pakistan. Journal of Food Composition and Analysis, 115, Article 104919. https://doi.org/10.1016/j.jfca.2022.104919
Doneen, L. D. (1964). Water quality for agriculture department of irrigation. University of California, Davis.
Durov, S. (1948). Classifcation of natural waters and graphic presentation of their composition. Doklady Akademii Nauk SSSR, 1, 87–89.
Egbueri, J. C., Ezugwu, C. K., Unigwe, C. O., Onwuka, O. S., Onyemesili, O. C., & Mgbenu, C. N. (2021). Multidimensional analysis of the contamination status, corrosivity and hydrogeochemistry of groundwater from parts of the Anambra Basin, Nigeria. Analytical Letters, 54(13), 2126–2156. https://doi.org/10.1080/00032719.2020.1843049
Gaagai, A., Boudoukha, A., Boumezbeur, A., & Benaabidate, L. (2017). Hydrochemical characterization of surface water in the Babar watershed (Algeria) using environmetric techniques and time series analysis. International Journal of River Basin Management, 15(3), 361–372. https://doi.org/10.1080/15715124.2017.1299157
Gad, M., Abou El-Safa, M. M., Farouk, M., Hussein, H., Alnemari, A. M., Elsayed, S., Khalifa, M. M., Moghanm, F. S., Eid, E. M., & Saleh, A. H. (2021). Integration of water quality indices and multivariate modeling for assessing surface water quality in Qaroun Lake, Egypt. Water, 13(16), Article 2258. https://doi.org/10.3390/w13162258
Gad, M., El-Hendawy, S., Al-Suhaibani, N., Tahir, M. U., Mubushar, M., & Elsayed, S. (2020a). Combining hydrogeochemical characterization and a hyperspectral reflectance tool for assessing quality and suitability of two groundwater resources for irrigation in Egypt. Water, 12(8), Article 2169. https://doi.org/10.3390/w12082169
Gad, M., Elsayed, S., Moghanm, F. S., Almarshadi, M. H., Alshammari, A. S., Khedher, K. M., Eid, E. M., & Hussein, H. (2020b). Combining water quality indices and multivariate modeling to assess surface water quality in the Northern Nile Delta, Egypt. Water, 12(8), Article 2142. https://doi.org/10.3390/w12082142
Gharbi, A., Ali, Z. I., & Zairi, M. (2019). Groundwater suitability for drinking and agriculture purposes using irrigation water quality index and multivariate analysis: Case of Sidi Bouzid aquifer, central Tunisia. Environmental Earth Sciences, 78(24), Article 692. https://doi.org/10.1007/s12665-019-8733-y
Gilbert, C., Browell, J., & McMillan, D. (2020). Leveraging turbine-level data for improved probabilistic wind power forecasting. IEEE Transactions on Sustainable Energy, 11(3), 1152–1160. https://doi.org/10.1109/TSTE.2019.2920085
Gupta, P. K. (2020). Pollution load on Indian soil-water systems and associated health hazards: A review. Journal of Environmental Engineering, 146(5). https://doi.org/10.1061/(ASCE)EE.1943-7870.0001693
Gupta, S. K., & Gupta, I. C. (1987). Management of saline soils and water. Oxford and IBH Publication Company.
Haritash, A. K., Gaur, S., & Garg, S. (2016). Assessment of water quality and suitability analysis of River Ganga in Rishikesh, India. Applied Water Science, 6(4), 383–392. https://doi.org/10.1007/s13201-014-0235-1
Hinge, G., Bharali, B., Baruah, A., & Sharma, A. (2022). Integrated groundwater quality analysis using water Quality Index, GIS and multivariate technique: A case study of Guwahati City. Environmental Earth Sciences, 81(16), Article 412. https://doi.org/10.1007/s12665-022-10544-0
Hossain, M., Patra, P. K., Begum, S. N., & Rahaman, C. H. (2020). Spatial and sensitivity analysis of integrated groundwater quality index towards irrigational suitability investigation. Applied Geochemistry, 123, Article 104782. https://doi.org/10.1016/j.apgeochem.2020.104782
Islam, S. M. D. U., Bhuiyan, M. A. H., Rume, T., & Azam, G. (2017). Hydrogeochemical investigation of groundwater in shallow coastal aquifer of Khulna District, Bangladesh. Applied Water Science, 7(8), 4219–4236. https://doi.org/10.1007/s13201-017-0533-5
Kadaoui, M., Bouali, A., & Arabi, M. (2019). Assessment of physicochemical and bacteriological groundwater quality in irrigated Triffa Plain, North-East of Morocco. Applied Water Science, 42(1), 100–109. https://doi.org/10.2478/jwld-2019-0050
Kelley, W. P. (1963). Use of saline irrigation water. Soil Science, 95(6), 385–391. https://doi.org/10.1097/00010694-196306000-00003
Krishna Kumar, S., Bharani, R., Magesh, N. S., Godson, P. S., & Chandrasekar, N. (2014). Hydrogeochemistry and groundwater quality appraisal of part of south Chennai coastal aquifers, Tamil Nadu, India using WQI and fuzzy logic method. Applied Water Science, 4(4), 341–350. https://doi.org/10.1007/s13201-013-0148-4
Lanjwani, M. F., Khuhawar, M. Y., & Jahangir Khuhawar, T. M. (2020). Assessment of groundwater quality for drinking and irrigation uses in taluka Ratodero, district Larkana, Sindh, Pakistan. International Journal of Environmental Analytical Chemistry, 102(16), 4134–4157. https://doi.org/10.1080/03067319.2020.1780222
Li, P., Wu, J., & Qian, H. (2016). Hydrochemical appraisal of groundwater quality for drinking and irrigation purposes and the major influencing factors: A case study in and around Hua County, China. Arabian Journal of Geosciences, 9, Article 15. https://doi.org/10.1007/s12517-015-2059-1
Liu, C. W., Lin, K. H., & Kuo, Y. M. (2003). Application of factor analysis in the assessment of groundwater quality in a Blackfoot disease area in Taiwan. Science of the Total Environment, 313(1–3), 77–89. https://doi.org/10.1016/S0048-9697(02)00683-6
Maghrebi, M., Noori, R., Partani, S., Araghi, A., Barati, R., Farnoush, H., & Torabi Haghighi, A. (2021). Iran’s groundwater hydrochemistry. Earth and Space Science, 8(8), Article e2021EA001793. https://doi.org/10.1029/2021EA001793
Mokoena, P., Kanyerere, T., & van Bever Donker, J. (2020). Hydrogeochemical characteristics and evaluation of groundwater quality for domestic and irrigation purposes: A case study of the Heuningnes Catchment, Western Cape Province, South Africa. SN Applied Sciences, 2(9), Article 1548. https://doi.org/10.1007/s42452-020-03339-0
Muthusamy, P., Paneerselvam, B., Kaliyappan, S. P., Almohamad, H., Aldosari, A. A., & Hazem Ghassan Abdo, H. G. (2023). Pollution source identification and suitability assessment of groundwater quality for drinking purposes in semi-arid regions of the southern part of India. Water, 15(22), Article 3995. https://doi.org/10.3390/w15223995
Noori, R., Ghahremanzadeh, H., Kløve, B., Adamowski, J. F., & Baghvand, A. (2018). Modified-DRASTIC, modified-SINTACS and SI methods for groundwater vulnerability assessment in the southern Tehran aquifer. Journal of Environmental Science and Health, Part A, 54(1), 89–100. https://doi.org/10.1080/10934529.2018.1537728
Noori, R., Maghrebi, M., Mirchi, A., Tang, Q., Bhattarai, R., Sadegh, M., Noury, M., Torabi Haghighi, A., Kløve, B., & Madani, K. (2021). Anthropogenic depletion of Iran’s aquifers. Proceedings of the National Academy of Sciences, 118(25), Article e2024221118. https://doi.org/10.1073/pnas.2024221118
Pan, C., Ng, K. T. W., Fallah, B., & Richter, A. (2019). Evaluation of the bias and precision of regression techniques and machine learning approaches in total dissolved solids modeling of an urban aquifer. Environmental Science and Pollution Research, 26(2), 1821–1833. https://doi.org/10.1007/s11356-018-3751-y
Panda, B. R., Chidambaram, S., Ganesh, N., Adithya, V. S., Prasanna, M. V., Pradeep, K., & Vasudevan, U. (2018). A hydrochemical approach to estimate mountain front recharge in an aquifer system in TamilNadu, India. Acta Geochimica, 37(3), 465–488. https://doi.org/10.1007/s11631-017-0229-4
Ravikumar, P., & Somashekar, R. K. (2017). Principal component analysis and hydrochemical facies characterization to evaluate groundwater quality in Varahi River basin, Karnataka state, India. Applied Water Science, 7(2), 745–755. https://doi.org/10.1007/s13201-015-0287-x
Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils. Soil Science, 78(2), 154. https://doi.org/10.1097/00010694-195408000-00012
Roy, A., Keesari, T., Mohokar, H., Sinha, U. K., & Bitra, S. (2018). Assessment of groundwater quality in hard rock aquifer of central Telangana State for drinking and agriculture purposes. Applied Water Science, 8(5), 1–18. https://doi.org/10.1007/s13201-018-0761-3
Saikrishna, K., Purushotham, D., Sunitha, V., Reddy, Y. S., Brahmaiah, T., Reddy, B. M., & Nallusamy, B. (2023). Deciphering groundwater quality, mechanisms controlling groundwater chemistry in and around Suryapet, Telangana, South India. Total Environmental Research Themes, 6, Article 100035. https://doi.org/10.1016/j.totert.2023.100035
Sako, A., Yaro, J. M., & Bamba, O. (2018). Impacts of hydrogeochemical processes and anthropogenic activities on groundwater quality in the Upper Precambrian sedimentary aquifer of northwestern Burkina Faso. Applied Water Science, 8(3), Article 88. https://doi.org/10.1007/s13201-018-0735-5
Sarala Thambavani, D., & Uma Mageswari, T. S. R. (2014). Water quality indices as indicators for potable water. Desalination and Water Treatment, 52(25–27), 4772–4782. https://doi.org/10.1080/19443994.2013.834517
Sarkar, M., Pal, S. C., & Islam, A. R. M. T. (2022). Groundwater quality assessment for safe drinking water and irrigation purposes in Malda district, Eastern India. Environmental Earth Sciences, 81(2), Article 52. https://doi.org/10.1007/s12665-022-10188-0
Selvakumar, S., Chandrasekar, N., & Kumar, G. (2017). Hydrogeochemical characteristics and groundwater contamination in the rapid urban development areas of Coimbatore, India. Water Resources and Industry, 7, 26–33. https://doi.org/10.1016/j.wri.2017.02.002
Singh, S., Ghosh, N. C., Gurjar, S., Krishan, G., Kumar, S., & Berwal, P. (2017). Index-based assessment of suitability of water quality for irrigation purpose under Indian conditions. Environmental Monitoring and Assessment, 190(1), Article 29. https://doi.org/10.1007/s10661-017-6407-3
Siva Kumar, P., Balasundareshwaran, A., Kumaraswamy, K., & Balaselvakumar, S. (2017). Assessment of groundwater potential zones in Dindigul District, Tamil Nadu, using Gis-based on analytical hierarchical process (AHP) technique. International Journal of Recent Scientific Research, 8(12), 22684–22690.
Srinivasamoorthy, K., Gopinath, M., Chidambaram, S., Vasanthavigar, M., & Sarma, V. S. (2014). Hydrochemical characterization and quality appraisal of groundwater from Pungar sub basin, Tamilnadu, India. Journal of King Saud University – Science, 26(1), 37–52. https://doi.org/10.1016/j.jksus.2013.08.001
Subba Rao, N. (2017). Hydrogeology: Problems with solutions. Prentice Hall of India.
Subba Rao, N., Dinakar, A., & Sun, L. (2022a). Estimation of groundwater pollution levels and specific ionic sources in the groundwater, using a comprehensive approach of geochemical ratios, pollution index of groundwater, unmix model and land use/land cover – A case study. Journal of Contaminant Hydrology, 248, Article 103990. https://doi.org/10.1016/j.jconhyd.2022.103990
Subba Rao, N., Rashmirekha Das, A., Sahoo, H. K., & Gugulothu, S. (2024). Hydrochemical characterization and water quality perspectives for groundwater management for urban development. Groundwater for Sustainable Development, 24, Article 101071. https://doi.org/10.1016/j.gsd.2023.101071
Subba Rao, N., Sunitha, B., Das, R., & Anil Kumar, B. (2022b). Monitoring the causes of pollution using groundwater quality and chemistry before and after the monsoon. Physics and Chemistry of the Earth, 128, Article 103228. https://doi.org/10.1016/j.pce.2022.103228
Sunitha, V., & Reddy, B. M. (2022). Geochemical characterization, deciphering groundwater quality using pollution index of groundwater (PIG), water quality index (WQI) and geographical information system (GIS) in hard rock aquifer, South India. Applied Water Science, 12, Article 41. https://doi.org/10.1007/s13201-021-01527-w
Thilagavathi, R., Chidambaram, S., Thivya, C., Prasanna, M. V., Keesari, T., & Pethaperumal, S. (2017). Assessment of groundwater chemistry in layered coastal aquifers using multivariate statistical analysis. Sustainable Water Resources Management, 3(1), 55–69. https://doi.org/10.1007/s40899-017-0078-7
Todd, D. K., & Mays, L. W. (2005). Groundwater hydrology (3rd ed). Wiley.
Todd, D. K. (1980). Groundwater hydrology. John Wiley & Sons, Inc.
Umamageswari, T. S. R. (2022). Spatial distribution of hydrogeochemical parameters of ground water for the suitability of drinking and agricultural utility by different water quality indices. Indian Journal of Environmental Protection, 42(12), 1486–1494.
Umamageswari, T. S. R., Sarala Thambavani, D., & Liviu, M. (2019). Hydrogeochemical processes in the groundwater environment of Batlagundu block, Dindigul district, Tamil Nadu: Conventional graphical and multivariate statistical approach. Applied Water Science, 9(1), Article 14. https://doi.org/10.1007/s13201-018-0890-8
Varade, A. M., Yenkie, R. O., Shende, R. R., Golekar, R. B., Wagh, V. M., & Khandare, H. W. (2018). Assessment of water quality for the groundwater resources of urbanized part of the Nagpur District, Maharashtra (India). American Journal of Water Resource, 6(3), 89–111.
Wagh, V. M., Panaskar, D. B., Varade, A. M., Mukate, S. V., Gaikwad, S. K., Pawar, R. S., Muley, A. A., & Aamalawar, M. L. (2016). Major ion chemistry and quality assessment of the groundwater resources of Nanded tehsil, a part of southeast Deccan Volcanic Province, Maharashtra, India. Environmental Earth Sciences, 75(21), Article 1418. https://doi.org/10.1007/s12665-016-6212-2
Wilcox, L. V. (1955). Classification and use of irrigation waters (U. S. Department of Agriculture, Circular No. 696). Washington.
World Health Organization. (2017). World health statistics: Monitoring health for the SDGS, sustainable development goals. http://apps.who.int/iris/handle/10665/255336
Xing, L., Huang, L., Yang, Y., Xu, J., Zhang, W., Chi, G., & Hou, X. (2018). The blocking effect of clay in groundwater systems: A case study in an inland plain area. International Journal of Environmental Research and Public Health, 15(9), Article 1816. https://doi.org/10.3390/ijerph15091816
Zahedi, S. (2017). Modification of expected conflicts between Drinking water Quality Index and Irrigation water Quality Index in water quality ranking of shared extraction wells using Multi Criteria decision making techniques. Ecological Indicators, 83, 368–379. https://doi.org/10.1016/j.ecolind.2017.08.017
Zakaria, N., Anornu, G., Adomako, D., Owusu-Nimo, F., & Gibrilla, A. (2021). Evolution of groundwater hydrogeochemistry and assessment of groundwater quality in the Anayari catchment. Groundwater for Sustainable Development, 12, Article 100489. https://doi.org/10.1016/j.gsd.2020.100489