Sustainable recovery plan for an urban-rural community affected by the Fundão Dam disaster in Brazil
Abstract
The rupture of Fundão Dam spilled contaminated tailings across the Doce river basin, severely damaging municipalities such as the urban Barra Longa and the rural Gesteira. The wave of tailings led to the sediment deposition in rivers margins, causing the loss of riparian forests and cropping areas. Sediment analyses confirmed the presence of toxic compounds (sodium and ether amine) and a very low fertility. In consequence, there was a sharp decline in agro-pastoral production in Gesteira, leading to land abandonment and rural exodus. In the urban area of Barra Longa, the wave of tailings damaged the urban floodplain and the square, which were rehabilitated using grey infrastructure. Alternatively, we proposed a new landscape recovery plan for both Barra Longa and Gesteira based on Nature and Community-based solutions that contemplate the inclusion of green infrastructure, the remediation of toxic compounds, the restoration of soil fertility, permeability and stabilization, riparian forest rehabilitation and the recovery of agro-pastoral productivity, ultimately aiming at reducing the flood risk and land abandonment.
Keyword : disaster, ether amine, floodplain, forest restoration, landscape planning, remediation, rural exodus, sodium, social capital

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Adobe Systems. (2012). Adobe Photoshop CS6 [Computer software]. https://www.adobe.com/products/photoshop.html
Aldrich, D. P., & Meyer, M. A. (2015). Social capital and community resilience. American Behavioral Scientist, 59(2), 254–256. https://doi.org/10.1177/0002764214550299
Andrade, G. F., Paniz, F. P., Martins, A. C., Jr., Rocha, B. A., Lobato, A. K. S., Rodrigues, J. L., Cardoso-Gustavson, P., Masuda, H. P., & Batista, B. L. (2018). Agricultural use of Samarco’s spilled mud assessed by rice cultivation: A promising residue use? Chemosphere, 193, 892–902. https://doi.org/10.1016/j.chemosphere.2017.11.099
Araujo, A. C., Viana, P. R. M., & Peres, A. E. C. (2005). Reagents in iron ores flotation. Minerals Engineering, 18(2), 219–224. https://doi.org/10.1016/j.mineng.2004.08.023
ArcGIS Esri. (2017). ArcGIS (Version 10.5) [Computer software]. https://www.esri.com/en-us/arcgis
Auto CAD Autodesk. (2017). AutoCAD (Version 2018) [Computer software]. https://www.autodesk.com/products/autocad/overview
Baião, É. E., Santos, C. H. B., Santos, A. H., Marques, G., Lima, J. C., Rigobelo, E. C., & Scotti, M. R. (2021). High C-and N-based soil fertility and microbial associations sustain the plant biodiversity of the campo rupestre in Brazil. Geoderma Regional, 25, Article e00401. https://doi.org/10.1016/j.geodrs.2021.e00401
Batisteli, G. M. B. (2007). Amina residual na flotação catiônica reversa de minério de ferro [MS thesis, Federal University of Minas Gerais]. Belo Horizonte, Minas Gerais, Brazil.
Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911–917. https://doi.org/10.1139/o59-099
Brazilian Agricultural Research Corporation. (1997). Manual de métodos de análise do solo. Rio de Janeiro, Brazil.
Bremner, J. M. (1960). Determination of nitrogen in soil by the Kjeldahl method. The Journal of Agricultural Science, 55(1), 11–33. https://doi.org/10.1017/S0021859600021572
Bremner, J. M., & Keeney, D. R. (1965). Exchangeable ammonium, nitrate and nitrite by steam distillation methods. In C. A. Black (Ed.), Methods of soil analysis: Chemical and microbiological properties (pp. 595–730). American Society of Agronomy.
Britto, D. T., & Kronzucker, H. J. (2002). NH4+ toxicity in higher plants: A critical review. Journal of Plant Physiology, 159(6), 567–584. https://doi.org/10.1078/0176-1617-0774
Britto, D. T., Siddiqi, M. Y., Glass, A. D., & Kronzucker, H. J. (2001). Futile transmembrane NH4+ cycling: A cellular hypothesis to explain ammonium toxicity in plants. Proceedings of the National Academy of Sciences, 98, 4255–4258. https://doi.org/10.1073/pnas.061034698
Cechin, A., Araújo, V. S., & Amand, L. (2021). Exploring the synergy between Community Supported Agriculture and agroforestry: Institutional innovation from smallholders in a Brazilian rural settlement. Journal of Rural Studies, 81, 246–258. https://doi.org/10.1016/j.jrurstud.2020.10.031
Cordeiro, J., Gomes, A. R., Santos, C. H. B., Rigobelo, E. C., Baptista, M. B., Moura, P. M., & Scotti, M. R. (2022). Rehabilitation of the Doce River Basin after the Fundão dam collapse: What has been done, what can be done and what should be done? River Research and Applications, 38(2), 194–208. https://doi.org/10.1002/rra.3894
Davila, R. B., Fontes, M. P. F., Pacheco, A. A., & da Silva Ferreira, M. (2020). Heavy metals in iron ore tailings and floodplain soils affected by the Samarco dam collapse in Brazil. Science of the Total Environment, 709, Article 136151. https://doi.org/10.1016/j.scitotenv.2019.136151
Fernandez, G., & Ahmed, I. (2019). “Build back better” approach to disaster recovery: Research trends since 2006. Progress in Disaster Science, 1, Article 100003. https://doi.org/10.1016/j.pdisas.2019.100003
Filippov, L. O., Severov, V. V., & Filippova, I. V. (2014). An overview of the beneficiation of iron ores via reverse cationic flotation. International Journal of Mineral Processing, 127, 62–69. https://doi.org/10.1016/j.minpro.2014.01.002
Fortes, B. C. S., Teixeira, M. C. V., Costa, S. P., Wagner, M. H., & Scotti, M. R. (2022). Post-disaster recovery plan for a rural settler’s community affected by the Fundão dam tailings in Brazil. Journal of Rural Studies, 93, 55–66. https://doi.org/10.1016/j.jrurstud.2022.05.013
Frostegård, A., & Bååth, E. (1996). The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology and Fertility of Soils, 22, 59–65. https://doi.org/10.1007/BF00384433
Garcia, L. C., Ribeiro, D. B., de Oliveira, R. F., Roque, F. O., Ochoa-Quintero, J. M., & Laurance, W. F. (2017). Brazil’s worst mining disaster: Corporations must be compelled to pay the actual environmental costs. Ecological Applications, 27(1), 5–9. https://doi.org/10.1002/eap.1461
Gehron, M. J., & White, D. C. (1983). Sensitive assay of phospholipid glycerol in environmental samples. Journal of Microbiological Methods, 1(1), 23–32. https://doi.org/10.1016/0167-7012(83)90004-0
Gomes, A. R., Antão, A., Santos, A. G. P., Lacerda, T. J., Medeiros, M. B., Isla, A. S., Alvarenga, S., Santos, C. H., Rigobelo, E. C., & Scotti, M. R. (2021). Rehabilitation of a riparian site contaminated by tailings from the Fundão Dam, Brazil, using different remediation strategies. Environmental Toxicology and Chemistry, 40(8), 2359–2373. https://doi.org/10.1002/etc.5075
Gomes, A. R., Antão, A., Santos, C. H., Rigobelo, E. C., & Scotti, M. R. (2024). Assessing the reclamation of a contaminated site affected by the Fundão dam tailings trough phytoremediation and bioremediation. International Journal of Phytoremediation, 1–16.
Google. (2021). Google Earth Pro (Version 7.3.3) [Computer software]. https://www.google.com/earth/versions/
Google. (2022). Google Earth Pro (Version 2022) [Computer software]. https://www.google.com/earth/versions/
Gurusamy, B. T., & Vasudeo, A. D. (2023). Socio-economic and ecological adaptability across South Asian Floodplains. Journal of Environmental Engineering and Landscape Management, 31(2), 121–131. https://doi.org/10.3846/jeelm.2023.19014
Hamlin, S. L., & Nielsen-Pincus, M. (2020). From gray copycats to green wolves: Policy and infrastructure for flood risk management. Journal of Environmental Planning and Management, 64(9), 1599–1621. https://doi.org/10.1080/09640568.2020.1835619
Heberer, J. A., & Below, F. E. (1989). Mixed nitrogen nutrition and productivity of wheat grown in hydroponics. Annals of Botany, 63(6), 643–649. https://doi.org/10.1093/oxfordjournals.aob.a087793
Imperiale, A. J., & Vanclay, F. (2016). Experiencing local community resilience in action: Learning from post-disaster communities. Journal of Rural Studies, 47, 204–219. https://doi.org/10.1016/j.jrurstud.2016.08.002
Instituto Brasileiro do Meio Ambiente e Recursos Naturais Renováveis. (2015). Laudo Técnico Preliminar – Impactos ambientais decorrentes do desastre envolvendo o rompimento da barragem de Fundão, em Mariana, Minas Gerais. Diretoria de Proteção Ambiental – DIPRO & Coordenação Geral de Emergências Ambientais. CGEMA, Brasilia.
Instituto Brasileiro de Geografia e Estatística. (2017). Censo agropecuário. https://cidades.ibge.gov.br/brasil/mg/barra-longa/pesquisa/24/27745
Instituto Brasileiro de Geografia e Estatística. (2010). Metadados Carta Internacional ao Milionésimo. http://mapas.ibge.gov.br/interativos/servicos/wms-do-arcgis
International Union for Conservation of Nature. (2020). Ensuring effective nature-based solutions. https://www.iucn.org/resources/iucn-issues-briefs
Jacobs, C. H. M. (2018). Aplicação do Plano de Manejo de Rejeito nos Trechos 6 e 7. Revisão, 1(2), Article 390.
Johnson, L. A., & Hayashi, H. (2012). Synthesis efforts in disaster recovery research. International Journal of Mass Emergencies and Disasters, 30(2), 212–238. https://doi.org/10.1177/028072701203000205
Jones, E., Doughorty, K., & Brown, P. (2022). ‘Building back better’ in the context of multi-hazards in the Caribbean. Disaster, 46, S151–S165. https://doi.org/10.1111/disa.12545
Kimura, A. C., Baptista, M. B., & Scotti, M. R. (2017). Soil humic acid and aggregation as restoration indicators of a seasonally flooded riparian forest under buffer zone system. Ecological Engineering, 98, 146–156. https://doi.org/10.1016/j.ecoleng.2016.10.054
Klebercz, O., Mayes, W. M., Anton, Á. D., Feigl, V., Jarvis, A. P., & Gruiz, K. (2012). Ecotoxicity of fluvial sediments downstream of the Ajka red mud spill, Hungary. Journal of Environmental Monitoring, 14(8), 2063–2071. https://doi.org/10.1039/c2em30155e
Laughlin, D. C. (2014). Applying trait-based models to achieve functional targets for theory driven ecological restoration. Ecology Letters, 17(7), 771–784. https://doi.org/10.1111/ele.12288
Lilli, M. A., Nerantzaki, S. D., Riziotis, C., Kotronakis, M., Efstathiou, D., Kontakos, D., Lymberakis, P., Avramakis, M., Tsakirakis, A., Protopapadakis, K., & Nikolaidis, N. P. (2020). Vision-based decision-making methodology for riparian forest restoration and flood protection using nature-based solutions. Sustainability, 12(8), Article 3305. https://doi.org/10.3390/su12083305
Lima, A. T., Bastos, F. A., Teubner, F. J., Jr., Neto, R. R., Cooper, A., & Barroso, G. F. (2020). Strengths and weaknesses of a hybrid post disaster management approach: The Doce River (Brazil) mine-tailing dam burst. Environmental Management, 65, 711–724. https://doi.org/10.1007/s00267-020-01279-4
Liu, Y., Yang, Q., & Duan, L. (2018). Adjusting the structure combinations of plant communities in urban greenspace reduced the maintenance energy consumption and GHG emissions. Journal of Environmental Engineering and Landscape Management, 26(4), 261–274. https://doi.org/10.3846/jeelm.2018.6126
Lowrance, R., Altier, L. S., Newbold, J. D., Schnabel, R. R., Groffman, P. M., Denver, J. M., Correll, D. D. L., Gilliam, J. W., & Robinson, J. L. (1997). Water quality functions of riparian forest buffers in Chesapeake Bay watersheds. Environmental Management, 21, 687–712. https://doi.org/10.1007/s002679900060
Meraj, G. (2020). Ecosystem service provisioning–underlying principles and techniques. SGVU Journal of Climate Change and Water, 7, 56–64.
Nel, J. L., Le Maitre, D. C., Nel, D. C., Reyers, B., Archibald, S., Van Wilgen, B. W., & Engelbrecht, F. A. (2014). Natural hazards in a changing world: A case for ecosystem-based management. PLoS One, 9(5), Article e95942. https://doi.org/10.1371/journal.pone.0095942
Nixon, I. K. (2021). Standard penetration test State-of-the-art report. In Penetration testing (Vol. 1, pp. 3–22). Routledge. https://doi.org/10.1201/9780203743959-2
Oliveira, B. T. A., Mendes, L. C., Felippe, M. F., & Silva, B. M. (2017). Transformações na morfologia fluvial decorrentes do rompimento da Barragem de Fundão: estudos preliminares. In XVII Simposio Brasileiro de Geografia Física Aplicada e I Congresso Nacional de Geografia Física (pp. 3941–3952), Campinas (SP). https://ocs.ige.unicamp.br/ojs/sbgfa/article/view/2543
Oliveira, L. C. F., & Salgado, O. A. (1987). As regiões fitoecologicas, sua natureza e seus recursos econômicos, estudo fitogeográfico. In Projeto RADAMBRASIL: Folha SE, Rio Doce: Levantamento de Recursos Naturais (Vol. 34, pp. 353–416). IBGE.
Paulelli, A. C. C., Cesila, C. A., Devóz, P. P., de Oliveira, S. R., Ximenez, J. P. B., dos Reis Pedreira Filho, W., & Barbosa, F., Jr. (2022). Fundão tailings dam failure in Brazil: Evidence of a population exposed to high levels of Al, As, Hg, and Ni after a human biomonitoring study. Environmental Research, 205, Article 112524. https://doi.org/10.1016/j.envres.2021.112524
Peres, A. E. C., & Mapa, P. S. (2008, September 24–28). Innovative flotation routes in an iron ore concentrator. In D. Z. Wang (Ed.), Proceedings of the XXIV International Mineral Processing Congress, Beijing.
Pyles, L. (2007). Community organizing for post-disaster social development: Locating social work. International Social Work, 50(3), 321–333. https://doi.org/10.1177/0020872807076044
Quirk, J. P. (2001). The significance of the threshold and turbidity concentrations in relation to sodicity and microstructure. Australian Journal of Soil Research, 39(6), 1185–1217. https://doi.org/10.1071/SR00050
Regnier, P., Neri, B., Scuteri, S., & Miniati, S. (2008). From emergency relief to livelihood recovery: Lessons learned from post-tsunami experiences in Indonesia and India. Disaster Prevention and Management, 17(3), 410–430. https://doi.org/10.1108/09653560810887329
Ritchie, L. A., & Gill, D. A. (2007). Social capital theory as an integrating theoretical framework in technological disaster research. Sociological Spectrum, 27(1), 103–129. https://doi.org/10.1080/02732170601001037
Roque, A. D., Pijawka, D., & Wutich, A. (2020). The role of social capital in resiliency: Disaster recovery in Puerto Rico. Risk Hazards & Crisis in Public Policy, 11, 204–235. https://doi.org/10.1002/rhc3.12187
Rouhanizadeh, B., Kermanshachi, S., & Nipa, T. J. (2020). Exploratory analysis of barriers to effective post-disaster recovery. International Journal of Disaster Risk Reduction, 50, Article 101735. https://doi.org/10.1016/j.ijdrr.2020.101735
Rumbach, A., Makarewicz, C., & Németh, J. (2016). The importance of place in early disaster recovery: A case study of the 2013 Colorado floods. Journal of Environmental Planning and Management, 59(11), 2045–2063. https://doi.org/10.1080/09640568.2015.1116981
Russo, A., Ignatieva, M., Cirella, G. T., Belelli, M. L., Krestov, P., Korzhov, E., Kalita, V., Pavlovsky, V., & Escobedo, F. J. (2017). Biophilia: Nature-based solutions for sustainable cities. In L. Kanunnikova, M. Ignatieva, & I. Melnichuk (Eds.), Three pillars of landscape architecture: Design, planning and management. New Visions.
Samarco. (2017). Relatorio anual de sustentabilidade belo horizonte: Samarco. Brazil.
Santamaria, P., Elia, A., Parente, A., & Serio, F. (1998). Fertilization strategies for lowering nitrate content in leafy vegetables: Chicory and rocket salad cases. Journal of Plant Nutrition, 21(9), 1791–1803. https://doi.org/10.1080/01904169809365524
Santolin, C. V. A., Cimielli, V. S. T., Nascentes, C. C., & Windmöller, C. C. (2015). Distribution and environmental impact evaluation of metals in sediments from the Doce River Basin, Brazil. Environmental Earth Sciences, 74, 1235–1248. https://doi.org/10.1007/s12665-015-4115-2
Santos, O. S. H., Avellar, F. C., Alves, M., Trindade, R. C., Menezes, M. B., Ferreira, M. C., França, G. S., Cordeiro, J., Sobreira, F. G., Yoshida, I. M., Moura, P. M., Baptista, M. B., & Scotti, M. R. (2019). Understanding the environmental impact of a mine dam rupture in Brazil: Prospects for remediation. Journal of Environmental Quality, 48(2), 439–449. https://doi.org/10.2134/jeq2018.04.0168
Schultz, R. C., Isenhart, T. M., Simpkins, W. W., & Colletti, J. P. (2004). Riparian forest buffers in agroecosystems-lessons learned from the bear creek watershed, central Iowa, USA. Agroforestry Systems, 61, 35–50. https://doi.org/10.1007/978-94-017-2424-1_3
Scotti, M. R., Gomes, A. R., Lacerda, T. J., Ávila, S. S., Silva, S. L. L., Antão, A., Santos, A. G. P., Medeiros, M. B., Alvarenga, S., Santos, C. H., & Rigobelo, E. C. (2020). Remediation of a riparian site in the Brazilian Atlantic forest reached by contaminated tailings from the collapsed Fundão dam with native woody species. Integrated Environmental Assessment and Management, 16(5), 669–675. https://doi.org/10.1002/ieam.4272
Segura, F. R., Nunes, E. A., Paniz, F. P., Paulelli, A. C. C., Rodrigues, G. B., Braga, G. U. L., Filho, W. R. P., Barbosa, F., Jr., Cerchiaro, G., Silva, F. F., & Batista, B. L. (2016). Potential risks of the residue from Samarco′s mine dam burst (Bento Rodrigues, Brazil). Environmental Pollution, 218, 813–825. https://doi.org/10.1016/j.envpol.2016.08.005
Senna, G. M. (2019). Uma Cartografia do Plano Popular do Reassentamento Coletivo de Gesteira/MG: imersão em uma construção coletiva – comunidade atingida, assessoria técnica e universidade. Universidade Federal de Ouro Preto.
Sheridan, J. M., Lowrance, R., & Bosch, D. D. (1999). Management effects on runoff and sediment transport in riparian forest buffers. Transactions of the American Society of Agricultural Engineers, 42(1), 55–64. https://doi.org/10.13031/2013.13214
Silva, D. L., Ferreira, M. C., & Scotti, M. R. (2015). O maior desastre ambiental brasileiro: de Mariana (MG) a Regência (ES). Arquivos do Museu de História Natural e Jardim Botȃnico, 24, 136–158.
Silva, J. G. (2018). Cartografia do processo de reassentamento de Gesteira/Barra Longa/MG após o rompimento da Barragem de Fundão. Universidade Federal de Ouro Preto.
SketchUp. (2018). SketchUp (Version 2018) [Computer software]. Trimble Inc. https://www.sketchup.com/
Spier, C. A., Oliveira, S. M. B., Sial, A. N., & Rios, F. J. (2007). Geochemistry and genesis of the banded iron formations of the Cauê formation, Quadrilátero Ferrífero, Minas Gerais, Brazil. Precambrian Research, 152(3–4), 170–206. https://doi.org/10.1016/j.precamres.2006.10.003
SPSS. (2017). IBM SPSS Statistics for Windows (Version 25.0) [Computer software]. IBM Corp. https://www.ibm.com/products/spss-statistics
Straub, A. M., Gray, B. J., Ritchie, L. A., & Gill, D. A. (2020). Cultivating disaster resilience in rural Oklahoma: Community disenfranchisement and relational aspects of social capital. Journal of Rural Studies, 73, 105–113. https://doi.org/10.1016/j.jrurstud.2019.12.010
Temmerman, S., Meire, P., Bouma, T. J., Herman, P. M., Ysebaert, T., & De Vriend, H. J. (2013). Ecosystem-based coastal defence in the face of global change. Nature, 504(7478), 79–83. https://doi.org/10.1038/nature12859
Trogrlić, R. S., Wright, G. B., Adeloye, A. J., Duncan, M. J., & Mwale, F. (2017). Taking stock of community-based flood risk management in Malawi: Different stakeholders, different perspectives. Environmental Hazards, 17(2), 107–127. https://doi.org/10.1080/17477891.2017.1381582
Tzoulas, K., Korpela, K., Venn, S., Yli-Pelkonen, V., Kaźmierczak, A., Niemela, J., & James, P. (2007). Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. Landscape and Urban Planning, 81(3), 167–178. https://doi.org/10.1016/j.landurbplan.2007.02.001
White, D. C., Davis, W. M., Nickels, J. S., King, J. D., & Bobbie, R. J. (1979). Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia, 40, 51–62. https://doi.org/10.1007/BF00388810
Whittaker, J., Haynes, K., Handmer, J., & McLennan, J. (2013). Community safety during the 2009 Australian ‘black saturday’ bushfires: An analysis of household preparedness and response. International Journal of Wildland Fire, 22(6), 841–849. https://doi.org/10.1071/WF12010
Woodruff, S., Tran, T., Lee, J., Wilkins, C., Newman, G., Ndubisi, F., & Van Zandt, S. (2020). Green infrastructure in comprehensive plans in coastal Texas. Journal of Environmental Planning and Management, 64(9), 1578–1598. https://doi.org/10.1080/09640568.2020.1835618
Zhu, J. K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), 66–71. https://doi.org/10.1016/S1360-1385(00)01838-0
Zhu, Z. L., & Wen, Q. X. (1992). Nitrogen in soils of China. Science and Technology Publishing House.