Measuring sustainability in supply chain management in construction companies
Abstract
This paper provides an analysis of the most important sustainability indicators for SSCM in construction and gives a detailed overview of what has been scientifically accomplished in the field to date, and identifies areas for further research. The most important sustainability indicators were also grouped and presented in the literature review into the main seven assessment groups of the SSCM construction industry and ranked by experts from Northern Italy and Lithuania in several different ways.
Based on the data from the Table 3, it can be inferred that a harmonious work environment among ecological sustainability indicators appeared as the most crucial indicator for respondents. Environmental education was among the most important social indicators. In the legal group, work efficiency emerged as the most significant indicator, while in the physical group, sustainable resource use was crucial. In the political realm, economic and political stability was the most important, and among technological indicators, innovation stood out. Among economic indicators, profit was the most significant sustainability indicator for respondents.
A general indicator importance method combined results obtained from expert surveys using various methods. The ranking of sustainability indicators in each group was not included in the calculation of the overall indicator importance, but the results were similar in both cases. The determined importance of indicator values could be adapted for further analysis, specifically for multicriteria evaluation, as per the conceptual model shown in Figure 1.
This article provides members of the construction industry with detailed calculations and results of the evaluation of key sustainability indicators related to supply chain groups. This study explores several possible ways to measure the importance of sustainability indicators, which could provide further theoretical insights into SSCM in the construction industry and help develop an accurate sustainability index model.
Article in Lithuanian.
Tiekimo grandinės valdymo statybos įmonėse tvarumo matavimas
Santrauka
Šiais laikais mokslininkai vis dažniau atsižvelgia į tvarumo aspektą statybų sektoriuje. Siekdami pabrėžti augančią tvarumo sampratos svarbą bendrojoje darbo kultūroje, statybų įmonių vadovai turėtų atlikti tvariojo tiekimo grandinės valdymo vertinimą ir diegti tvarumui matuoti skirtą indeksą. Tvarumo vertinimas statybos tiekimo grandinės valdymo procese (TGV) dažniausiai atliekamas atsižvelgiant į ekonominius, fizinius, socialinius ir geografinius rodiklius, Brundtlando konvencijos nutarimu geriau žinomus kaip TBL (angl. Triple Bottom Line).
Atlikus išplėstinę akademinės literatūros analizę, pasikonsultavus su darniosios statybos pramonės ekspertais buvo apžvelgta esama tiekimo grandinės (TG) tvarumo vertinimo situacija statybų sektoriuje. Straipsnyje pateikti tyrimai, skirti nagrinėti tvariosios tiekimo grandinės valdymą (TTGV) statybų sektoriuje iš holistinės perspektyvos, daugiausia dėmesio skiriant tvarumo matavimo svarbai statybos srityje. Antroje straipsnio dalyje buvo pristatyti apklausos metu gauti respondentų rezultatai vertinant tvarumo rodiklius statybų sektoriuje skirtingais metodais. Šiame darbe pateikiamas autorės sudarytas tvarumo rodiklių sąrašas, skirtas statybos bendrovių tiekimo grandinėms nagrinėti. Šie tvarumo rodikliai buvo suskirstyti į kategorijas, priskirti vienai ar porai tvarumo grupių, peržiūrint jų naudojimą ankstesnėje literatūroje. Atlikus išplėstinę 30 respondentų iš Lietuvos ir Šiaurės Italijos statybos sektoriaus profesionalų apklausą buvo sudaryti tvarumo rodiklių vertinimo sąrašai, kuriuose tvarumo rodikliai statybų sektoriuje pagal svarbą buvo įvertinti keliais skirtingais būdais. Šie rodikliai apima TTGV statybos įmonėse taikymo principus. Galiausiai, siekiant kiekybiškai įvertinti tvarumo rodiklius, įvertinti jų efektyvumą ir klasifikaciją, buvo pristatytas svarbiausių tvarumo rodiklių sąrašas. Rodiklių svarbos nustatymas gali padėti akademikams tvarumo rodiklių matavimo indekso kūrimo procese, prisidėti prie tvariosios politikos formavimo ir pagerinti statybos sektoriaus bendrovių strategijas.
Šio straipsnio autorės pasiūlyta statybos įmonių TGV tvarumo vertinimo ir matavimo sistema gali būti plėtojama svarbiausių TTGV rodiklių statybai vertinti ir geriausiam statybos įmonių tiekėjui parinkti, taip pat naudojama sprendžiant daugiakriterio vertinimo problemas. Šio tyrimo tikslas – įvertinti TTGV rodiklių reikšmę statybos pramonėje ir nustatyti, kuri tvarumo vertinimo sistema yra optimali tvariajai statybai patikimumo, sąnaudų mažinimo ir ilgaamžiškumo principų požiūriu. Šie komponentai yra vieni sudėtingiausių statybos inžinerijos ir valdymo uždavinių.
Reikšminiai žodžiai: statybos pramonė, tvarumo rodiklis, statybos tiekimo grandinė, tvarumo matavimas, tvariosios tiekimo grandinės valdymas.
Keyword : construction industry, sustainability indicator, construction supply chain, sustainability measurement, sustainable supply chain management
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Ahi, P., Searcy, C., & Jaber, M. Y. (2018). A quantitative approach for assessing sustainability performance of corporations. Ecological Economics, 152, 336–346. https://doi.org/10.1016/j.ecolecon.2018.06.012
Ali, B., Sopian, K., Chan, H. Y., Mat, S., & Zaharim, A. (2008). Key success factors in implementing renewable energy programme in Malaysia. WSEAS Transactions of Environment and Development, 4, 1141–1150.
Alsanad, S. (2015). Awareness, drivers, actions, and barriers of sustainable construction in Kuwait. Procedia Engineering, 118, 969–983. https://doi.org/10.1016/j.proeng.2015.08.538
Amiri, M., Hashemi-Tabatabaei, M., Ghahremanloo, M., Keshavarz-Ghorabaee, M., Zavadskas, E. K., & Banaitis, A. (2021). A new fuzzy BWM approach for evaluating and selecting a sustainable supplier in supply chain management. International Journal of Sustainable Development and World Ecology, 28, 125–142. https://doi.org/10.1080/13504509.2020.1793424
Bakhtiarizadeh, E., Shahzad, W. M., Poshdar, M., Khalfan, M., & Rotimi, J. O. B. (2021). Blockchain and information integration: Applications in New Zealand’s prefabrication supply chain. Buildings, 11, Article 608. https://doi.org/10.3390/buildings11120608
Banchuen, P., Sadler, I., & Shee, H. (2017). Supply chain collaboration aligns order-winning strategy with business outcomes. IIMB Management Review, 29, 109–121. https://doi.org/10.1016/j.iimb.2017.05.001
Banihashemi, S., Hosseini, M. R., Golizadeh, H., & Sankaran, S. (2017). Critical success factors (CSFs) for integration of sustainability into construction project management practices in developing countries. International Journal of Project Management, 35, 1103–1119. https://doi.org/10.1016/j.ijproman.2017.01.014
Bastas, A., & Liyanage, K. (2018). ISO 9001 and supply chain integration principles based sustainable development: A Delphi study. Sustainability, 10(12), Article 4569. https://doi.org/10.3390/su10124569
Berssaneti, F. T., & Carvalho, M. M. (2015). Identification of variables that impact project success in Brazilian companies. International Journal of Project Management, 33, 638–649. https://doi.org/10.1016/j.ijproman.2014.07.002
Blengini, A., & Shields, D. J. (2010). Green labels and sustainability reporting: Overview of the building products supply chain in Italy. Management of Environmental Quality, 21, 477–493. https://doi.org/10.1108/14777831011049115
Brix-Asala, C., Geisbush, A. K., Sauer, P., Schopflin, P., & Zehendner, A. (2018). Sustainability tensions in supply chains: A case study of paradoxes and their management. Sustainability, 10(2), Article 424. https://doi.org/10.3390/su10020424
Callistus, T., & Clinton, A. (2016). Evaluating barriers to effective implementation of project monitoring and evaluation in the Ghanaian construction industry. Procedia Engineering, 164, 389–394. https://doi.org/10.1016/j.proeng.2016.11.635
Cappuyns, V. (2016). Inclusion of social indicators in decision support tools for the selection of sustainable site remediation options. Journal of Environmental Management, 184, 45–56. https://doi.org/10.1016/j.jenvman.2016.07.035
Chandra, C., & Kumar, S. (2000). Supply chain management in theory and practice: A passing fad or a fundamental change? Industrial Management & Data Systems, 100, 100–114. https://doi.org/10.1108/02635570010286168
Chang, I. S., Wang, W., Wu, J., Sun, Y., & Hu, R. (2018). Environmental impact assessment follow-up for projects in China: Institution and practice. Environmental Impact Assessment Review, 73, 7–19. https://doi.org/10.1016/j.eiar.2018.06.005
De Sousa Jabbour, A. B. L., Jabbour, C. J. C., Foropon, C., & Godinho Filho, M. (2018). When titans meet – can industry 4.0 revolutionise the environmentally-sustainable manufacturing wave? The role of critical success factors. Technological Forecasting and Social Change, 132, 18–25. https://doi.org/10.1016/j.techfore.2018.01.017
Deiva Ganesh, A., & Kalpana, P. (2022). Future of artificial intelligence and its influence on supply chain risk management – A systematic review. Computers & Industrial Engineering, 169, Article 108206. https://doi.org/10.1016/j.cie.2022.108206
Fernández-Sánchez, G., & Rodríguez-López, F. (2010). A methodology to identify sustainability indicators in construction project management–Application to infrastructure projects in Spain. Ecological Indicators, 10(6), 1193–1201. https://doi.org/10.1016/j.ecolind.2010.04.009
Fortune, J., & White, D. (2006). Framing of project critical success factors by a systems model. International Journal of Project Management, 24, 53–65. https://doi.org/10.1016/j.ijproman.2005.07.004
Gan, X., Fernandez, I. C., Guo, J., Wilson, M., Zhao, Y., Zhou, B., & Wu, J. (2017). When to use what: Methods for weighting and aggregating sustainability indicators. Ecology Indicators, 81, 491–502. https://doi.org/10.1016/j.ecolind.2017.05.068
Goyal, S., Routroy, S., & Shah, H. (2018). Measuring the environmental sustainability of supply chain for Indian steel industry: A graph theoretic approach. Business Process Management Journal, 24(2), 517–536. https://doi.org/10.1108/BPMJ-10-2016-0200
Gunnasdóttir, I., Davíðsdóttir, B., Worrell, E., & Sigurgeirsdottir, S. (2021). It is best to ask: Designing a stakeholder-centric approach to selecting sustainable energy development indicators. Energy Research & Social Science, 74, Article 101968. https://doi.org/10.1016/j.erss.2021.101968
Heidary Dahooie, J., Hosseini Dehshiri, S. J., Banaitis, A., & Binkytė-Vėlienė, A. (2020). Identifying and prioritizing cost reduction solutions in the supply chain by integrating value engineering and gray multi-criteria decision-making. Technological and Economic Development of Economy, 26, 1311–1338. https://doi.org/10.3846/tede.2020.13534
Ihuah, P. W., Kakulu, I. I., & Eaton, D. (2014). A review of critical project management success factors (CPMSF) for sustainable social housing in Nigeria. International Journal of Sustainable Built Environment, 3(1), 62–71. https://doi.org/10.1016/j.ijsbe.2014.08.001
Jollands, N. (2006). Getting the most out of eco-efficiency indicators for policy. Sustainable Development Indicators in Ecological Economics (pp. 317–343). Edward Elgar Publishing. https://doi.org/10.4337/9781845428952.00024
Kivilä, J., Martinsuo, M., & Vuorinen, L. (2017). Sustainable project management through project control in infrastructure projects. International Journal of Project Management, 35, 1167–1183. https://doi.org/10.1016/j.ijproman.2017.02.009
Laasch, O. (2018). Beyond the purely commercial business model: Organizational value logics and the heterogeneity of sustainability business models. Long Range Planning Journal, 51, 158–183. https://doi.org/10.1016/j.lrp.2017.09.002
Liu, Y., Eckert, C., Yannou-Le Bris, G., & Petit, G. (2019). A fuzzy decision tool to evaluate the sustainable performance of suppliers in an agrifood value chain. Computers and Industrial Engineering, 127, 196–212. https://doi.org/10.1016/j.cie.2018.12.022
Luthra, S., Govindan, K., Kannan, D., Mangla, S. K., & Garg, C. P. (2017). An integrated framework for sustainable supplier selection and evaluation in supply chains. Journal of Cleaner Production, 140, 1686–1698. https://doi.org/10.1016/j.jclepro.2016.09.078
Maqbool, R. (2018). Efficiency and effectiveness of factors affecting renewable energy projects; an empirical perspective. Energy, 158, 944–956. https://doi.org/10.1016/j.energy.2018.06.015
Martens, M. L., & Carvalho, M. M. (2017). Key factors of sustainability in project management context: A survey exploring the project managers’ perspective. International Journal of Project Management, 35, 1084–1102. https://doi.org/10.1016/j.ijproman.2016.04.004
Masood, R., Lim, J. B. P., González, V. A., Roy, K., & Khan, K. I. A. (2022). A systematic review on supply chain management in prefabricated house-building research. Buildings, 12(1), Article 40. https://doi.org/10.3390/buildings12010040
Mentzer, J. T., DeWitt, W., Keebler, J. S., Min, S., Nix, N. W., Smith, C. D., & Zacharia, Z. G. (2001). Defining supply chain management. Journal of Business Logistics, 22, 1–25. https://doi.org/10.1002/j.2158-1592.2001.tb00001.x
Moktadir, M. A., Mahmud, Y., Banaitis, A., Sarder, T., & Khan, M. R. (2021). Key performance indicators for adopting sustainability practices in footwear supply chains. E&M Economics and Management, 24, 197–213. https://doi.org/10.15240/tul/001/2021-1-013
Moldan, B., & Dahl, A. L. (2007). Challenges to sustainability indicators. In Sustainability indicators: A scientific assessment (pp. 1–26). Island Press.
Nord, N., & Sjøthun, S. F. (2014). Success factors of energy efficiency measures in buildings in Norway. Energy Building, 76, 476–487. https://doi.org/10.1016/j.enbuild.2014.03.010
Pade, C., Mallinson, B., & Sewry, D. (2008). An elaboration of critical success factors for rural ICT project sustainability in developing countries: Exploring the DWESA case. Journal of Information Technology Case and Application Research, 10(4), 32–55. https://doi.org/10.1080/15228053.2008.10856146
Pulaski, M. H., & Horman, M. J. (2005). Continuous value enhancement process. Journal of Construction Engineering Management, 131, 1274–1282. https://doi.org/10.1061/(ASCE)0733-9364(2005)131:12(1274)
Reid, J., & Rout, M. (2020). Developing sustainability indicators – The need for radical transparency. Ecological Indicators, 110, Article 105941. https://doi.org/10.1016/j.ecolind.2019.105941
Rejeb, A., Simske, S., Rejeb, K., Treiblmaier, H., & Zailani, S. (2020). Internet of Things research in supply chain management and logistics: A bibliometric analysis. Internet of Things, 12, Article 100318. https://doi.org/10.1016/j.iot.2020.100318
Schönborn, G., Berlin, C., Pinzone, M., Hanisch, C., Georgoulias, K., & Lanz, M. (2019). Why social sustainability counts: The impact of corporate social sustainability culture on financial success. Sustainable Production and Consumption, 17, 1–10. https://doi.org/10.1016/j.spc.2018.08.008
Sindhwani, R., Afridi, S., Kumar, A., Banaitis, A., Luthra, S., & Singh, P. L. (2022). Can Industry 5.0 revolutionize the wave of resilience and social value creation? A multi-criteria framework to analyze enablers. Technology in Society, 68, Article 101887. https://doi.org/10.1016/j.techsoc.2022.101887
Soltani, S., Gu, N., Sivam, A., Ochoa, P. I., & McGinley, T. (2018). Social sustainability in the built environment: A critical conceptual framework. Zero Waste Sa Research Centre for Sustainable Design and Behaviour, School of Art, Architecture and Design, University of South Australia Zero Waste, Australia.
Sroufe, R. (2017). Integration and organizational change towards sustainability. Journal of Cleaner Production, 162, 315–329. https://doi.org/10.1016/j.jclepro.2017.05.180
Stanitsas, M., Kirytopoulos, K., & Loepoulos, V. (2021). Integrating sustainability indicators into project management: The case of construction industry. Journal of Cleaner Production, 279, Article 123774. https://doi.org/10.1016/j.jclepro.2020.123774
Suhi, S. A., Enayet, R., Haque, T., Ali, S. M., Moktadir, A., & Paul, S. K. (2019). Environmental sustainability assessment in supply chain: An emerging economy context. Environmental Impact Assessment Review, 79, Article 106306. https://doi.org/10.1016/j.eiar.2019.106306
Tabish, S. Z. S., & Jha, K. N. (2011). Identification and evaluation of success factors for public construction projects. Construction Management and Economics, 29, 809–823. https://doi.org/10.1080/01446193.2011.611152
Toor, S. U. R., & Ogunlana, S. O. (2008). Critical coms of success in large-scale construction projects: Evidence from Thailand construction industry. International Journal of Project Management, 26, 420–430. https://doi.org/10.1016/j.ijproman.2007.08.003
Ukaga, O. (2014). Gilbert Silvius, Ron Schipper, Julia Planko, Jasper van den Brink and Adri Kohler: Sustainability in project management. Environment, Development and Sustainability, 16, 455–457. https://doi.org/10.1007/s10668-013-9511-8
Van Horen, F., Van Der Wal, A., & Grinstein, A. (2018). Green, greener, greenest: Can competition increase sustainable behavior? Journal of Environmental Psychology, 59, 16–25. https://doi.org/10.1016/j.jenvp.2018.08.007
Wilkerson, M. L., Mitchell, M. G. E., Shanahan, D., Wilson, K. A., Ives, C. D., Lovelock, C. E., & Rhodes, J. R. (2018). The role of socio-economic factors in planning and managing urban ecosystem services. Ecosystem Services, 31, 102–110. https://doi.org/10.1016/j.ecoser.2018.02.017
Yan, J., Lai, F., Liu, Y., Yu, D. C., Yi, W., & Yan, J. (2019). Multi-stage transport and logistic optimization for mobilized and distributed battery. Energy Conversion and Management, 196, 261–276. https://doi.org/10.1016/j.enconman.2019.06.001
Yong, Y. C., & Mustaffa, N. E. (2013). Critical success factors for Malaysian construction projects: An empirical assessment. Construction Management and Economy, 31, 959–978. https://doi.org/10.1080/01446193.2013.828843
Zhang, H., & Yu, L. (2021). Resilience-cost tradeoff supply chain planning for the prefabricated construction project. Journal of Civil Engineering and Management, 27(1), 45–59. https://doi.org/10.3846/jcem.2021.14114
Židonienė, S., & Kruopienė, J. (2015). Life cycle assessment in environmental impact assessments of industrial projects: Towards the improvement. Journal of Cleaner Production, 106, 533–540. https://doi.org/10.1016/j.jclepro.2014.07.081