A study on the use of banks financial technologies in the states of the European Union
Abstract
The article analysis financial technologies and their relevance and usefulness in the existing financial market. The work presents and analyzes the services (models) provided by financial technologies, they can be divided into payments, asset management, crowdfunding, lending, and the capital and insurance market. The main and most popular services provided by banks, which are related to financial technologies, are presented. A SWOT analysis of financial technologies is also presented, which shows the advantages and disadvantages of FinTech. The services provided by financial technologies are very diverse, they are provided by both ordinary companies and banks. This article focuses on financial technology that is provided by banks – internet usage: internet banking, number of ATMs, credit transfers in a state, percentage of population in a state, which shows how many people have a debit or credit card and whether those residents have received or made a digital transfer. In the third part, using multi-criteria evaluation methods: CRITIC and EDAS and performing cluster analysis, European Unions are compared and ranked.
Article in Lithuanian.
Bankų finansinės technologijos ir jų naudojimas Europos Sąjungos valstybėse
Santrauka
Straipsnyje yra nagrinėjamos finansinės technologijos (FinTech) bei jų aktualumas ir naudingumas esančioje finansų rinkoje. Finansinių technologijų teikiamos paslaugos yra labai įvairios, jas teikia tiek paprastos įmonės, tiek bankai. Finansinių technologijų naudojimas bankuose yra gana siaurai išnagrinėta tema. Todėl šiame darbe dėmesys yra sutelktas į bankų finansines technologijas bei jų naudojimą Europos Sąjungos valstybėse. Kiekvienas bankas gali pasirinkti, kokias paslaugas jis nori įdiegti į savo veiklą, bet dauguma bankų naudojasi bent jau penkiomis vienodomis paslaugomis, kurios bus nagrinėjamos šiame darbe. Šios pateiktos paslaugos yra teikiamos daugumoje bankų – naudojimasis internetu: internetinė bankininkystė, bankomatų skaičius, kreditiniai pervedimai valstybėje, valstybėje esančių gyventojų skaičiaus procentas, kuris parodo, kiek žmonių turi debeto arba kredito kortelę bei ar tie gyventojai yra gavę arba atlikę skaitmeninį pervedimą. Trečioje dalyje, taikant daugiakriterius vertinimo metodus CRITIC ir EDAS bei atliekant klasterinę analizę, yra analizuojami ir lyginami Europos Sąjungos valstybėse veikiantys bankai bei juose naudojamos finansinės technologijos.
Reikšminiai žodžiai: finansinės technologijos, daugiakriteriai vertinimo metodai, CRITIC metodas, EDAS metodas, klasterinė analizė, ES valstybės.
Keyword : financial technologies, multi-criteria evaluation methods, CRITIC method, EDAS method, cluster analysis, EU states
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Crum, M., Nelson, T., de Borst, J., & Byrnes, P. (2022). The use of cluster analysis in entrepreneurship research: Review of past research and future directions. Journal of Small Business Management, 60(4), 961–1000. https://doi.org/10.1080/00472778.2020.1748475
European Payments Council. (n.d.). SEPA payment statistics. Retrieved October 30, 2022, from https://www.europeanpaymentscouncil.eu/what-we-do/be-involved/sepa-payment-statistics
Eurostat. (n.d.). Statistics. Retrieved October 30, 2022, from https://ec.europa.eu/eurostat/databrowser/view/tin00099/default/table?lang=en
Giglio, F. (2021). Fintech: A literature review. International Business Research, 15(1), 80–85. https://doi.org/10.5539/ibr.v15n1p80
Gimpel, H., Rau, D., & Röglinger, M. (2018). Understanding FinTech start-ups – a taxonomy of consumer-oriented service offerings. Electronic Markets, 28(3), 245–264. https://doi.org/10.1007/S12525-017-0275-0
Hu, Z., Ding, S., Li, S., Chen, L., & Yang, S. (2019). Adoption intention of Fintech services for bank users: An empirical examination with an extended technology acceptance model. Symmetry, 11(3), 340. https://doi.org/10.3390/sym11030340
Invest Lithuania. (n.d.). The Fintech landscape in Lithuania 2021-2022. Retrieved September 19, 2022, from https://investlithuania.com/report/fintech-report-2021-2022/
Yim, O., & Ramdeen, K. T. (2015). Hierarchical cluster analysis: Comparison of three linkage measures and application to psychological data. The Quantitative Methods for Psychology, 11(1), 8–21. https://doi.org/10.20982/tqmp.11.1.p008
Kahraman, C., Keshavarz Ghorabaee, M., Zavadskas, E. K., Cevik Onar, S., Yazdani, M., & Oztaysi, B. (2017). Intuitionistic fuzzy edas method: An application to solid waste disposal site selection. Journal of Environmental Engineering and Landscape Management, 25(1), 1–12. https://doi.org/10.3846/16486897.2017.1281139
Krishnan, A. R., Kasim, M. M., Hamid, R., & Ghazali, M. F. (2021). A modified CRITIC method to estimate the objective weights of decision criteria. Symmetry, 13(6), 973. https://doi.org/10.3390/sym13060973
Laidroo, L., Koroleva, E., Kliber, A., Rupeika-Apoga, R., & Grigaliuniene, Z. (2021). Business models of FinTechs – Difference in similarity? Electronic Commerce Research and Applications, 46, 101034. https://doi.org/10.1016/j.elerap.2021.101034
Lapinskaitė, I. ir Kvedarytė, R. (2020). Finansinių technologijų įtakos komercinių bankų pelningumo rodikliams tyrimas. Iš 23-iosios Lietuvos jaunųjų mokslininkų konferencijos „Mokslas – Lietuvos ateitis“ (p. 1–10), Vilnius, Lietuva. https://doi.org/10.3846/vvf.2020.029
Lee, I., & Shin, Y. J. (2018). Fintech: Ecosystem, business models, investment decisions, and challenges. Business Horizons, 61(1), 35–46. https://doi.org/10.1016/j.bushor.2017.09.003
Lietuvos bankas. (n. d.). Finansinės technologijos ir inovacijos. Žiūrėta 2022 m. rugsėjo 14 d. https://www.lb.lt/lt/finansines-technologijos-ir-inovacijos
Miguel, A. F., & Duval, L. (2019). Fintech and the socialization of the financial industry. International Journal of Business and Social Science, 10(9), 35–45. https://doi.org/10.30845/ijbss.v10n9a4
Murinde, V., Rizopoulos, E., & Zachariadis, M. (2022). The impact of the FinTech revolution on the future of banking: Opportunities and risks. International Review of Financial Analysis, 81, 102103. https://doi.org/10.1016/j.irfa.2022.102103
Namugenyi, C., Nimmagadda, S. L., & Reiners, T. (2019). Design of a SWOT analysis model and its evaluation in diverse digital business ecosystem contexts. Procedia Computer Science, 159, 1145–1154. https://doi.org/10.1016/j.procs.2019.09.283
Nazaritehrani, A., & Mashali, B. (2020). Development of E-banking channels and market share in developing countries. Financial Innovation, 6(1), 12. https://doi.org/10.1186/S40854-020-0171-z
Paradowski, B., Shekhovtsov, A., Bączkiewicz, A., Kizielewicz, B., & Sałabun, W. (2021). Similarity analysis of methods for objective determination of weights in multi-criteria decision support systems. Symmetry, 13(10), 1874. https://doi.org/10.3390/sym13101874
Pizzi, S., Corbo, L., & Caputo, A. (2021). Fintech and SMEs sustainable business models: Reflections and considerations for a circular economy. Journal of Cleaner Production, 281, 125217. https://doi.org/10.1016/j.jclepro.2020.125217
Rupeika-Apoga, R., & Thalassinos, E. I. (2020). Ideas for a regulatory definition of FinTech. International Journal of Economics and Business Administration, 8(2), 136–154. https://doi.org/10.35808/ijeba/448
Schueffel, P. (2016). Taming the beast: A scientific definition of Fintech. Journal of Innovation Management, 4(4), 32–54. https://doi.org/10.24840/2183-0606_004.004_0004
Skvarciany, V., & Astikė, K. (2022, May 12–13). Decent work and economic growth: Case of EU. In 12th International Scientific Conference “Business and Management 2022” (pp. 184–190), Vilnius, Lithuania. https://doi.org/10.3846/bm.2022.916
Skvarciany, V., Jurevičienė, D., & Volskytė, G. (2020). Assessment of sustainable socioeconomic development in European Union countries. Sustainability, 12(5), 1986. https://doi.org/10.3390/su12051986
Thakor, A. V. (2020). Fintech and banking: What do we know? Journal of Financial Intermediation, 41, 100833. https://doi.org/10.1016/J.JFI.2019.100833
The World Bank. (n.d., a). Automated teller machines (ATMs) (per 100,000 adults) – European Union. Retrieved October 30, 2022, from https://data.worldbank.org/indicator/FB.ATM.TOTL.P5?locations=EU
The World Bank. (n.d., b). The Global Findex Database 2021. Retrieved October 30, 2022, from https://www.worldbank.org/en/publication/globalfindex
Vučinić, M. (2020). Fintech and financial stability potential influence of FinTech on financial stability risks and benefits. Journal of Central Banking Theory and Practice, 2, 43–66. https://doi.org/10.2478/jcbtp-2020-0013
Wang, H., Chen, K., Zhu, W., & Song, Z. (2015). A process model on P2P lending. Financial Innovation, 1(1), 1–8. https://doi.org/10.1186/S40854-015-0002-9