Share:


A new approach for Solving a nonlinear system of second-order BVPs

    Taher Amoozad Affiliation
    ; Saeid Abbasbandy Affiliation
    ; Tofigh Allahviranloo Affiliation
    ; Mohsen Rostamy Malkhalifeh Affiliation

Abstract

In this paper, we introduce a new approach based on the Reproducing Kernel Method (RKM) for solving a nonlinear system of second-order Boundary Value Problems (BVPs) without the Gram-Schmidt orthogonalization process. What motivates us to use the RKM without the Gram-Schmidt orthogonalization process is its easy implementation, elimination of the Gram-Schmidt process, fewer calculations, and high accuracy. Finally, the compatibility of numerical results and theorems demonstrates that the Present method is effective.

Keyword : reproducing kernel method, system of second-order boundary value problem, convergence analysis, error analysis

How to Cite
Amoozad, T., Abbasbandy, S., Allahviranloo, T., & Rostamy Malkhalifeh, M. (2024). A new approach for Solving a nonlinear system of second-order BVPs. Mathematical Modelling and Analysis, 29(4), 669–683. https://doi.org/10.3846/mma.2024.19217
Published in Issue
Oct 11, 2024
Abstract Views
148
PDF Downloads
198
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

E. Babolian, S. Javadi and E. Moradi. Error analysis of reproducing kernel Hilbert space method for solving functional integral equations. Comput. Appl. Math., 300:300–311, 2016. https://doi.org/10.1016/j.cam.2016.01.008

M. Baccouch, H. Temimi and M. Ben-Romdhane. A discontinuous Galerkin method for systems of stochastic differential equations with applications to population biology, finance, and physics. Comput. Appl. Math., 388:113297, 2021. https://doi.org/10.1016/j.cam.2020.113297

M. Cakmak and S. Alkan. A numerical method for solving a class of systems of nonlinear Pantograph differential equations. Alexandria Engineering, 61:2651– 2661, 2022. https://doi.org/10.1016/j.aej.2021.07.028

M.G. Cui and Y. Lin. Nonlinear Numerical Analysis in the Reproducing Kernel Space, Nova Science, Hauppauge. Inc., Hauppauge, 2009.

M. Dehghan and A. Saadatmandi. The numerical solution of a nonlinear system of second-order boundary value problems using the sinc-collocation method. Math. Comput. Model., 46:1434–1441, 2007. https://doi.org/10.1016/j.mcm.2007.02.002

A. Faghih and P. Mokhtary. A novel Petrov-Galerkin method for a class of linear systems of fractional differential equations. Appl. Num. Math., 169:396– 414, 2021. https://doi.org/10.1016/j.apnum.2021.07.012

M. Faheem, A. Khan and P.J.Y. Wong. A Legendre wavelet collocation method for 1D and 2D coupled time-fractional nonlinear diffusion system. Comput. Math. Appl., 128:214–238, 2022. https://doi.org/10.1016/j.camwa.2022.10.014

F. Geng and M. Cui. Homotopy perturbation–reproducing kernel method for nonlinear systems of second order boundary value problems. Comput. Appl. Math., 235:2405–2411, 2011. https://doi.org/10.1016/j.cam.2010.10.040

F.Z. Geng and M.G. Cui. Solving a nonlinear system of second order boundary value problems. J. Math. Anal. Appl., 327:1167–1181, 2007. https://doi.org/10.1016/j.jmaa.2006.05.011

F.A. Ghassabzadeh, E. Tohidi and H. Singh. RBF collocation approach to calculate numerically the solution of the nonlinear system of qFDEs. King Saud University-Science, 33:101288, 2021. https://doi.org/10.1016/j.jksus.2020.101288

V.L. Hansen. Functional Analysis, Entering Hilbert Space. World Scientific Publishing Co. Pte. Ltd., 2006. https://doi.org/10.1142/5976

W. Jiang and Z. Chen. Solving a system of linear Volterra integral equations using the new reproducing kernel method. Applied Mathematics and Computation, 219:10225–10230, 2013. https://doi.org/10.1016/j.amc.2013.03.123

B. Liu, Y. Wu, J. Guo, H. Zhang, J. Niu and F. Li. Finite difference Jacobian based Newton-Krylov coupling method for solving multi-physics nonlinear system of nuclear reactor. Annals of Nuclear Energy, 148:107670, 2020. https://doi.org/10.1016/j.anucene.2020.107670

J.F. Lu. Variational iteration method for solving a nonlinear system of secondorder boundary value problems. Comput. Math. Appl., 54:1133–1138, 2007. https://doi.org/10.1016/j.camwa.2006.12.060

J. Niu, M.Q. Xu, Y.Z. Lin and Q. Xue. Numerical solution of nonlinear singular boundary value problems. Comput. Appl. Math., 333:42–51, 2018. https://doi.org/10.1016/j.cam.2017.09.040

J. Niu and J. Zhang. Lobatto-reproducing kernel method for solving a linear system of second order boundary value problems. Appl. Math. Comput, 68:3631– 3653, 2022. https://doi.org/10.1007/s12190-021-01685-9

R. Saadeh. Numerical algorithm to solve a coupled system of fractional order using a novel reproducing kernel method. Alexandria Engineering, 60:4583–4591, 2021. https://doi.org/10.1016/j.aej.2021.03.033

H. Sahihi, T. Allahviranloo and S. Abbasbandy. Solving system of second-order bvps using a new algorithm based on reproducing kernel Hilbert space. Appl. Num. Math., 151:27–39, 2020. https://doi.org/10.1016/j.apnum.2019.12.008

Y. Wang, T. Chaolu and Z. Chen. Using reproducing kernel for solving a class of singular weakly nonlinear boundary value problems. Comput. Appl. Math., 87:367–380, 2010. https://doi.org/10.1080/00207160802047640

Y. Yu, J. Niu, J. Zhang and S.Y. Ning. A reproducing kernel method for nonlinear C-q-fractional IVPs. Appl. Math. Lett, 125:107751J, 2022. https://doi.org/10.1016/j.aml.2021.107751