Share:


A multi-criteria decision making for renewable energy selection using Z-numbers in uncertain environment

    Kajal Chatterjee Affiliation
    ; Samarjit Kar Affiliation

Abstract

In recent era of globalization, the world is perceiving an alarming rise in its energy consumption resulting in shortage of fossil fuels in near future. Developing countries like India, with fast growing population and economy, is planning to explore among its existing renewable energy sources to meet the acute shortage of overall domestic energy supply. For balancing diverse ecological, social, technical and economic features, selection among alternative renewable energy must be addressed in a multi-criteria context considering both subjective and objective criteria weights. In the proposed COPRAS-Z methodology, Z-number model fuzzy numbers with reliability degree to represents imprecise judgment of decision makers’ in evaluating the weights of criteria and selection of renewable energy alternatives. The fuzzy numbers are defuzzified and renewable energy alternatives are prioritized as per COmplex PropoRtional ASsessment (COPRAS) decision making method in terms of significance and utility degree. A sensitivity analysis is done to observe the variation in ranking of the criteria, by altering the coefficient of both subjective and objective weight. Also, the proposed methodology is compared with existing multi-criteria decision making (MCDM) methods for checking validity of the obtained ranking result.

Keyword : renewable energy, multi-criteria decision making (MCDM), COPRAS, Z number, fuzzy number

How to Cite
Chatterjee, K., & Kar, S. (2018). A multi-criteria decision making for renewable energy selection using Z-numbers in uncertain environment. Technological and Economic Development of Economy, 24(2), 739-764. https://doi.org/10.3846/20294913.2016.1261375
Published in Issue
Feb 21, 2018
Abstract Views
1847
PDF Downloads
1754
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Aliev, R.; Mraiziq, D.; Huseynov, O. 2015. Expected utility based decision making under Z-information and its application, Computational Intelligence and Neuroscience vol. 2015: 11. https://doi.org/10.1155/2015/364512

Aliev, R.; Huseynov, O.; Serdaroglu, R. 2016. Ranking of Z-numbers and its application in decision making, International Journal of Information Technology and decision making 15: 1–17. https://doi.org/10.1142/S0219622016500310

Aliev, R.; Bodur, E.; Mraiziq, D. 2013. Z-number based decision making for economic problem analysis, in Proceedings of the 7th International Conference on Soft Computing, Computing with Words and Perceptions in System Analysis, Decision and Control (ICSCCW ’13), 2–3 September, Izmir, Turkey 251–257 [online], [cited 24 April 2016]. Available from Internet: http://icafs-2016.com/proceedings/ICSCCW-2013_Proceeding.pdf

Antucheviciene, J.; Zakarevicius, A.; Zavadskas, E. 2011. Measuring congruence of ranking results applying particular MCDM methods, Informatica 22(3): 319–338 [online], [cited 20 March 2016]. Available from Internet: http://www.mii.lt/informatica/htm/INFO836.htm

Azedah, A.; Saberi, M.; Atashbar, N.; Chang, E. 2013. Z-AHP: A Z-number extension of fuzzy analytical hierarchy process, in 2013 7th IEEE International Conference on Digital Ecosystems and Technologies (DEST), 24–26 July 2013, California, USA, 141–147. https://doi.org/10.1109/DEST.2013.6611344

Baba, M.; Unnikrishnan, A.; Rajawat, A.; Bhattacharya, S.; Ramakrishnan, R.; Kurian, N.; Hameed, S.; Sundar, D. 2013. Demarcation of coastal vulnerability in and along the Indian coast, Journal of Geomatics 7(1): 25–31 [online], [cited 20 March 2016]. Available from Internet: http://drs.nio.org/drs/handle/2264/4360

Blachandra, R. 2009. Sustainable bioenergy for India: technical, economic and policy analysis, Energy 34(8): 1003–1013. https://doi.org/10.1016/j.energy.2008.12.012

Cherni, J.; Kentish, J. 2007. Renewable energy policy and electricity market reforms in China, Energy Policy 35(7): 3616–3629. https://doi.org/10.1016/j.enpol.2006.12.024

Cristobal, J. 2011. Multi-criteria decision-making in the selection of a renewable energy project in Spain: the Vikor method, Renewable Energy 36: 408–502. https://doi.org/10.1016/j.renene.2010.07.31

Deng, H.; Yeh, C.; Willis, R. 2000. Inter-company comparison using modified TOPSIS with objective weights, Computers and Operations Research 27: 963–973. https://doi.org/10.1016/S0305-0548(99)00069-6

EC. 2003. World energy, technology and climate policy outlook 2030 [online], [cited 16 January 2016]. European Commission, Directorate-General for Research and Energy. Available from Internet: http://espas.eu/orbis/document/world-energy-technology-and-climate-policy-outlook-weto-2030

Evans, A.; Strezov, V.; Evans, T. 2009. Assessment of sustainability indicators for renewable energy technologies, Renewable and Sustainable Energy Reviews 13(5): 1082–1088. https://doi.org/10.1016/j.rser.2008.03.008

Gardashova, L. 2014. Application of operational approaches to solving decision making problem using Z-numbers, Applied Mathematics 5: 1323–1334. https://doi.org/10.4236/am.2014.59125

Harish, V.; Kumar, A. 2014. Demand side management in India: action plan, policies and regulations, Renewable and Sustainable Energy Review 33: 613–624. https://doi.org/10.1016/j.rser.2014.02.021

Hirmer, S.; Cruickshank, H. 2014. The user-value of rural electrification: an analysis and adoption of existing models and theories, Renewable and Sustainable Energy Reviews 34: 145–154. https://doi.org/10.1016/j.rser.2014.03.005

Kabak, M.; Dagdeviren, M. 2014. Prioritization of renewable energy sources for Turkey by using a hybrid MCDM technology, Energy Conversation and Management 79: 25–33. https://doi.org/10.1016/j.enconman.2013.11.036

Kang, B.; Hu, Y.; Deng, Y.; Zhou, D. 2016. A new methodology of multicriteria decision-making in supplier selection based on Z-number, Mathematical Problems in Engineering vol. 2016: 17. https://doi.org/10.1155/2016/8475987

Kang, B.; Wei, D.; Li, Y.; Deng, Y. 2012a. Decision making using Z-numbers under uncertain environment, Journal of computational Information systems 8(7): 2807–2814 [online], [cited 18 March 2016]. Available from Internet: http://www/jofcis.com

Kang, B.; Wei, D.; Li, Y.; Deng, Y. 2012b. A method of converting Z-number to classical fuzzy number, Journal of Information and Computational Science 9(3): 703–709 [online], [cited 20 February 2016]. Available from Internet: http://www/joics.com

Kar, S.; Chatterjee, K. 2015. Supplier selection using ranking interval Type-2 fuzzy sets, in S. Satapathy, B. Biswal, S. Udgata, J. Mandal (Eds.). Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2014. Advances in Intelligent Systems and Computing, 327: 9–17. Springer, Cham. https://doi.org/10.1007/978-3-319-11933-5_2

Karakosta, C.; Doukas, H.; Psarras, J. 2010. Technology transfer through climate change: setting a sus-tainable energy pattern, Renewable and Sustainable Energy Reviews 14(6): 1546–1557. https://doi.org/10.1016/j.rser.2010.02.001

Kaya, T.; Kahraman, C. 2010. Multi-criteria renewable energy planning using an integrated Fuzzy VIKOR & AHP methodology: the case of Istanbul, Energy 35(6): 2517–2527. https://doi.org/10.1016/j.energy.2010.02.051

Keshavarz Ghorabaee, M.; Amiri, M.; Sadaghiani, J.; Goodarzi, G. 2014. Multiple criteria group decision-making for supplier selection based on COPRAS method with interval type-2 fuzzy sets, International Journal of Advanced Manuf Technology 75(5–8): 1115–1130. https://doi.org/10.1007/s00170-014-6142-7

Khare, V.; Nema, S.; Baredar, P. 2013. Status of solar wind renewable energy in India, Renewable and Sustainable Energy Reviews 27: 1–10. https://doi.org/10.1016/j.rser.2013.06.018

Kumar, A.; Kumar, K.; Kaushik, N.; Sharma, S; Mishra, S. 2010. Renewable energy in India: current status and future potentials, Renewable and Sustainable Energy Reviews 14(8): 2434–2442. https://doi.org/10.1016/j.rser.2010.04.003

Kumar, D.; Katoch, S. 2014. Sustainability indicators for run of the river (RoR) hydropower projects in hydro rich regions of India, Renewable and Sustainable Energy Reviews 35: 101–108. https://doi.org/10.1016/j.rser.2014.03.048

Luthra, S.; Kumar, S.; Garg, D.; Haleem, A. 2015. Barriers to renewable/sustainable energy technologies adoption in Indian perspective, Renewable and Sustainable Energy Reviews 41: 762–776. https://doi.org/10.1016/j.rser.2014.08.077

Ma, J.; Fan, Z.; Huang, L. 1999. A subjective and objective integrated approach to determine attribute weights, European Journal of Operational Research 112: 397–404. https://doi.org/10.1016/S0377-2217(98)00141-6

Mahesh, A.; Shoba Jasmin, K. 2013. Role of renewable energy investment in India: an alternative to CO2 mitigation, Renewable and Sustainable Energy Reviews 26: 414–424. https://doi.org/10.1016/j.rser.2013.05.069

Melin, P.; Castillo, O. 2013. A review on the applications of type-2 fuzzy logic in classification and pattern recognition, Expert System with Applications 40(13): 5413–5423. https://doi.org/10.1016/j.eswa.2013.03.020

Mohamad, D.; Shaharani, S.; Kamis, N. 2014. A Z-number based decision making procedure with ranking fuzzy numbers method, in International Conference on Quantitative Sciences and it’s Applications (ICOQSIA 2014), 12–14 August 2014, Langkawi, Malaysia, AIP Conference Proceedings 1635: 160–166. https://doi.org/10.1063/1.4903578

Nguyen, N.; Duong, M.; Tran, T.; Shresth, R.; Nadaud, F. 2010. Barriers to the adoption of renewable and energy-efficient technologies in the Vietnamese power sector [online], [cited 20 March 2016]. CIRED Working Papers 2010-18, Halshs-00444826, 1–7. Available from Internet: http://halshs.archives-ourvertes.fr/halshs-00464675

Painuly, P. 2001. Barriers to renewable energy penetration – a framework for analysis, Renewable Energy 24(1): 73–89.

Pillai, R.; Banerjee, R. 2009. Renewable energy in India: status and potential, Energy 34(8): 970–980. https://doi.org/10.1016/j.energy.2008.10.016

Ratha, S.; Prasanna, R. 2012. Bio prospecting microalgae as potential sources of Green Energy – challenges and perspectives (Review), Applied Biochemistry and Microbiology 48(2): 109–125. https://doi.org/10.1134/S000368381202010X

Razavi Hajiagha, S.; Hashemi, S.; Zavadskas, E. 2013. A complex proportional assessment method for group decision making in an interval-valued intuitionistic fuzzy environment, Technological and Economic Development of Economy 19(1): 22–37. https://doi.org/10.3846/20294913.2012.762953

Reddy, S.; Painuly, J. 2004. Diffusion of renewable energy technologies-barriers and stakeholders’ per-spectives, Renewable Energy 29: 1431–1447. https://doi.org/10.1016/j.renene.2003.12.003

Sawin, J. 2003. Charting a new energy future in State of the world 2003. Starke Linda (Ed.). New York: W.W. Norton & Company, 85–109.

Sengul, U.; Eren, M.; Shiraz, S.; Gezder, V.; Sengul, A. 2015. Fuzzy TOPSIS method for ranking renewable energy supply systems in Turkey, Renewable Energy 75: 617–625. https://doi.org/10.1016/j.renene.2014.10.045

Shannon, C. 1948. A mathematical theory of communication, Bell system Technical Journal 27(3): 379–592. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

Shemshadi, A.; Shirazi, H.; Toreihi, M.; Tarokh, M. 2011. A fuzzy VIKOR method for supplier selection based on Entropy method for objective weighting, Expert Systems with Applications 38: 12160–12167. https://doi.org/10.1016/j.eswa.2011.03.027

Soroudi, A.; Amaraee, T. 2013. Decision making under uncertainty in energy systems: state of the art, Renewable and Sustainable Energy Reviews 28: 376–384. https://doi.org/10.1016/j.rser.2013.08.039

Srivastava, S.; Sharma, R. 2013. The future of energy in India, Journal of Petrotech VIII(8): 78–85.

Tasri, A.; Susilawati, A. 2014. Selection among renewable energy alternatives based on a fuzzy analytic hierarchy process in Indonesia, Sustainable Energy Technologies and Assessments 7: 34–44. https://doi.org/10.1016/j.seta.2014.02.008

Tavakkoli-Moghaddam, R.; Anvari, A.; Saidat, A. 2015. A multi-criteria group decision-making approach for facility location selection using PROMETHEE under a fuzzy environment, Outlooks and Insights on Group Decision and Negotiation, Lecture notes in Business Information Processing 218: 145–156. https://doi.org/10.1007/978-3-319-19515-5_12

Tsoutsos, T.; Frantzeskaki, N.; Gekas, V. 2005. Environmental impacts from the solar energy technologies, Energy Policy 33(3): 289–296.

Wang, J.; Jing, Y.; Zhang, C.; Zhao, J. 2009. Review on multi-criteria decision analysis aid in sustainable energy decision-making, Renewable and Sustainable Energy Reviews 13(9): 2263–2278. https://doi.org/10.1016/j.rser.2009.06.021

Wang, Y.; Yang, J.; Xu, D.; Chin, K. 2006. On the centroids of fuzzy numbers, Fuzzy Sets and Systems 157(7): 919–926. https://doi.org/10.1016/j.fss.2005.11.006

Wilkins, G. 2012. Technology transfer for renewable energy. India: CRC Press Ltd.

Xiao, Z. 2014. Application of Z-numbers in multi-criteria decision making, in IEEE International Conference on Informative and Cybernetics for Computational Social Systems (ICCSS), 9–10 October 2014, Shandong, China, 91–95. https://doi.org/10.1109/iccss.2014.6961822

Yaakob, A.; Gegov, A. 2016. Interactive TOPSIS based group decision making methodology using Z-number, International Journal of Computational Intelligence Systems 9(2): 311–324. https://doi.org/10.1080/18756891.2016.1150003

Zadeh, L. 2011. A note on Z-numbers, Information science 181(14): 2923–2932. https://doi.org/10.1016/j.ins.2011.02.022

Zavadskas, E.; Kaklauskas, A.; Sarka, V. 1994. The new method of multicriteria complex proportional assessment of projects, Technological and Economic Development of Economy 1(3): 131–139.

Zavadskas, E.; Kaklauskas, A.; Turskis, Z.; Tamošaitienė, J. 2009. Multi-attribute decision-making model by applying grey numbers, Informatica 20(2): 305–320 [online], [cited 12 April 2016]. Available from Internet: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.457.7286&rep=rep1&type=pdf

Zeinalova, L. 2014. Choquet aggregation based decision making under Z-information, ICTACT Journal on Soft Computing: Special Issue on Soft Computing in System Analysis, Decision and Control 4(4): 819–824 [online], [cited 12 April 2016]. Available from Internet: http://ictactjournals.in/paper/IJSC_Splissue_Paper_7_819-824.pdf

Zeleny, M. 1996. Multiple criteria decision making. New York: Springer.

Zhang, L.; Zhou, P.; Newton, S.; Fang, J.; Zhou, D.; Zhang, L. 2015. Evaluating clean energy alternatives for Jiangsu, China: an improved multi-criteria decision making method, Energy 90(1): 953–964. https://doi.org/10.1016/j.energy.2015.07.124

Zitnick, C.; Kanade, T. 2004. Maximum entropy for collaborative filtering, in ACM Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, 7th July, Arlington, Virginia, 636–643.

Zoraghi, N.; Amin, M.; Talebi, G.; Zowghi, M. 2013. A fuzzy MCDM model with objective and subjective weights for evaluating service quality in hotel industries, Journal of Industrial Engineering International 9(38): 1–13. https://doi.org/10.1186/2251-712X-9-38