Share:


GEBCO Gridded Bathymetric Datasets for mapping Japan Trench geomorphology by means of GMT scripting toolset

Abstract

The study investigated geomorphology of the Japan Trench located east of Japan, Pacific Ocean. A high-resolution GEBCO Gridded Bathymetric Dataset was used for modeling, mapping and visualization. The study aimed to compare and analyse variations in the geomorphic structures of the two parts of the trench and to visualize variations in the geological, geophysical and bathymetric settings. Technically, the cartographic work was performed using scripting based on the Generic Mapping Toolset (GMT). Modelled cross-sectioning orthogonal profiles transecting the trench in a perpendicular direction were automatically digitized and graphed in the two segments. The results of the bathymetric analysis shown that the southern part is shallower: with deeper values in absolute (139 samples between –7000 to –8000 m) and statistical records (the most frequent values are within –5500 to –5800 m) comparing to the northern segment (–5300 to –5500 m). The geomorphological analysis shows a more complicated relief in the northern part of the trench, which has a higher seismic activity. The southern part has a gentler slope on the Honshu island side. The geoid modeling along the trench ranges in 0–20 mGal. The highest values are recorded by the Honshu Island (>40 mGal). The rest of the area has rather moderate undulations (20–40 mGal). The free-air marine gravity of the Sea of Japan is <40 mGal. The results include 2D and 3D graphical models, thematic cartographic maps, spatial and statistical analysis of the Japan Trench geomorphology. Tested GMT functionality can be applied to future regional bathymetric modeling of the ocean trenches. All presented maps and graphs are made using GMT scripting toolset.

Keyword : GMT, cartography, geoinformatics, geospatial analysis, Japan Trench

How to Cite
Lemenkova, P. (2020). GEBCO Gridded Bathymetric Datasets for mapping Japan Trench geomorphology by means of GMT scripting toolset. Geodesy and Cartography, 46(3), 98-112. https://doi.org/10.3846/gac.2020.11524
Published in Issue
Oct 8, 2020
Abstract Views
1214
PDF Downloads
511
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Abe, K. (1977). Tectonic implications of the large shioya-oki earthquakes of 1938. Tectonophysics, 41(4), 269–289. https://doi.org/10.1016/0040-1951(77)90136-6

Arai, K., Inoue, T., Ikehara, K., & Sasaki, T. (2014). Episodic subsidence and active deformation of the forearc slope along the Japan Trench near the epicenter of the 2011 Tohoku Earthquake. Earth and Planetary Science Letters, 408, 9–15. https://doi.org/10.1016/j.epsl.2014.09.048

Bose, S., Saha, P., Mori, J. J., Rowe, C., Ujiie, K., Chester, F. M., Conin, M., Regalla, C., Kameda, J., Toy, V., Kirkpatrick, J., Remitti, F., Moore, J. C., Wolfson-Schwehr, M., Nakamura, Y., & Gupta, A. (2015). Deformation structures in the frontal prism near the Japan Trench: Insights from sandbox models. Journal of Geodynamics, 89, 29–38. https://doi.org/10.1016/j.jog.2015.06.002

Boston, B., Moore, G. F., Nakamura, Y., & Kodaira, S. (2017). Forearc slope deformation above the Japan Trench megathrust: Implications for subduction erosion. Earth and Planetary Science Letters, 462, 26–34. https://doi.org/10.1016/j.epsl.2017.01.005

Dowdeswell, J. A., & Vásquez, M. (2013). Submarine landforms in the fjords of southern Chile: implications for glacimarine processes and sedimentation in a mild glacier-influenced environment. Quaternary Science Reviews, 64, 1–19. https://doi.org/10.1016/j.quascirev.2012.12.003

Dumont, M., Reninger, P. A., Pryet, A., Martelet, G., Aunay, B., & Join, J. L. (2018). Agglomerative hierarchical clustering of airborne electromagnetic data for multi-scale geological studies. Journal of Applied Geophysics, 157, 1–9. https://doi.org/10.1016/j.jappgeo.2018.06.020

Ferrini, V. (2018, November 28 – December 1). Briefing on the work of GEBCO (General Bathymetric Chart of the Oceans). In 19th Meeting of the Meso American – Caribbean Sea Hydrographic Commission (MACHC), Cartagena de Indias, Colombia.

Fujie, G., Ito, A., Kodaira, S., Takahashi, N., & Kaneda, Y. (2006). Confirming sharp bending of the Pacific plate in the northern Japan trench subduction zone by applying a traveltime mapping method. Physics of the Earth and Planetary Interiors, 157, 72–85. https://doi.org/10.1016/j.pepi.2006.03.013

Fukuda, S., Sueoka, S., Hasebe, N., Tamura, A., Arai, S., & Tagami, T. (2019). Thermal history analysis of granitic rocks in an arc-trench system based on apatite fission-track thermochronology: A case study of the Northeast Japan Arc. Journal of Asian Earth Sciences, 1, 100005. https://doi.org/10.1016/j.jaesx.2019.100005

Gauger, S., Kuhn, G., Gohl, K., Feigl, T., Lemenkova, P., & Hillenbrand, C. (2007). Swath-bathymetric mapping. Reports on Polar and Marine Research, 557, 38–45.

GEBCO Committee. (2016). General Bathymetric Chart of the Oceans (GEBCO) – from the coast to the deepest trench. Hydro International. https://www.hydro-international.com/content/article/from-the-coast-to-the-deepest-trench

Hayakawa, T., Kasahara, J., Hino, R., Sato, T., Shinohara, M., Kamimura, A., Nishino, M., Sato, T., & Kanazawa, T. (2002). Heterogeneous structure across the source regions of the 1968 Tokachi-Oki and the 1994 Sanriku-Haruka-Oki earthquakes at the Japan Trench revealed by an ocean bottom seismic survey. Physics of the Earth and Planetary Interiors, 132, 89–104. https://doi.org/10.1016/S0031-9201(02)00046-8

Ikehara, K., Kanamatsu, T., Nagahashi, Y., Strasser, M., Fink, H., Usami, K., Irino, T., & Wefer, G. (2016). Documenting large earthquakes similar to the 2011 Tohoku-oki earthquake from sediments deposited in the Japan Trench over the past 1500 years. Earth and Planetary Science Letters, 445, 48–56. https://doi.org/10.1016/j.epsl.2016.04.009

Ito, T., & Ogawa, Y. (1994). Origin of ferro-manganese nodules from the Japan Trench oceanward slope. The Geographical Journal, Tokyo Geographical Society, 103, 684–695 (in Japanese with English abstract). https://doi.org/10.5026/jgeography.103.6_684

Janssen, C., Naumann, R., Morales, L., Wirth, R., Rhede, D., & Dresen, G. (2015). Co-seismic and/or a-seismic microstructures of JFAST 343 core samples from the Japan Trench. Marine Geology, 362, 33–42. https://doi.org/10.1016/j.margeo.2015.01.013

Kawakatsu, H., & Seno, T. (1983). Triple seismic zone and the regional variation of seismicity along the Northern Honshu Arc. Journal of Geophysical research: Solid Earth, 88(B5), 4215–4230. https://doi.org/10.1029/JB088iB05p04215

Klaučo, M., Gregorová, B., Stankov, U., Marković, V., & Lemenkova, P. (2013). Determination of ecological significance based on geostatistical assessment: a case study from the Slovak Natura 2000 protected area. Central European Journal of Geosciences, 5(1), 28–42. https://doi.org/10.2478/s13533-012-0120-0

Klaučo, M., Gregorová, B., Stankov, U., Marković, V., & Lemenkova, P. (2017). Land planning as a support for sustainable development based on tourism: A case study of Slovak Rural Region. Environmental Engineering and Management Journal, 2(16), 449–458. https://doi.org/10.30638/eemj.2017.045

Kodaira, S., No, T., Nakamura, Y., Fujiwara, T., Kaiho, Y., Miura, S., Takahashi, N., Kaneda, Y., & Taira, A. (2012). Coseismic fault rupture at the trench axis during the 2011 TohokuOki earthquake. Nature Geoscience, 5, 646–650. https://doi.org/10.1038/ngeo1547

Kotov, S., & Pälike, H. (2019). Enhanced Principal Tensor Analysis as a tool for 3-way geological data reconstructions. Computers and Geosciences, 123, 161–171. https://doi.org/10.1016/j.cageo.2018.11.001

Kotov, S., & Pälike, H. (2017). Principal tensor analysis as a tool for paleoclimatic reconstructions. In 18th International Association for Mathematical Geosciences Conference 2017 (p. 67). IAMG, Perth.

Kuhn, G., Hass, C., Kober, M., Petitat, M., Feigl, T., Hillenbrand, C. D., Kruger, S., Forwick, M., Gauger, S., & Lemenkova, P. (2006). The response of quaternary climatic cycles in the South-East Pacific: development of the opal belt and dynamics behavior of the West Antarctic ice sheet. In K. Gohl (Ed.), Expeditionsprogramm Nr. 75 ANT XXIII/4, AWI Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.

Kumar, M. (2013). Free “Cook Book” for gridding bathymetric data. EOS Transactions American Geophysical Union, News, 94(9), 88. https://doi.org/10.1002/2013EO090005

Lay, T., Yamazaki, Y., Ammon, C. J., Cheung, K. F., & Kanamori, H. (2011). The 2011 MW 9.0 off the Pacific coast of Tohoku earthquake: Comparison of deep-water tsunami signals with finite-fault rupture model predictions. Earth Planets Space, 63, 797–801. https://doi.org/10.5047/eps.2011.05.030

Lemenkova, P., Promper, C., & Glade, T. (2012, June 2–8). Economic assessment of landslide risk for the Waidhofen a.d. Ybbs Region, Alpine Foreland, Lower Austria. In Protecting Society through Improved Understanding. 11th International Symposium on Landslides & the 2nd North American Symposium on Landslides & Engineered Slopes (NASL) (pp. 279–285). Banff, Canada.

Lemenkova, P. (2018a). R scripting libraries for comparative analysis of the correlation methods to identify factors affecting Mariana Trench formation. Journal of Marine Technology and Environment, 2, 35–42.

Lemenkova, P. (2018b). Hierarchical cluster analysis by R language for pattern recognition in the bathymetric data frame: a Case study of the Mariana Trench, Pacific Ocean. Virtual Simulation, Prototyping and Industrial Design. Proceedings of the 5th Conference, 2(5), 147–152.

Lemenkova, P. (2018c). Factor Analysis by R programming to assess variability among environmental determinants of the Mariana Trench. Turkish Journal of Maritime and Marine Sciences, 4, 146–155. https://doi.org/10.31223/osf.io/es9ka

Lemenkova, P. (2019a). An empirical study of R applications for data analysis in marine geology. Marine Science and Technology Bulletin, 8(1), 1–9. https://doi.org/10.33714/masteb.486678

Lemenkova, P. (2019b). Processing oceanographic data by Python libraries NumPy, SciPy and Pandas. Aquatic Research, 2, 73–91. https://doi.org/10.3153/AR19009

Lemenkova, P. (2019c). Testing linear regressions by StatsModel library of python for oceanological data interpretation. Aquatic Sciences and Engineering, 34, 51–60. https://doi.org/10.26650/ASE2019547010

Lemenkova, P. (2019d). Regression models by Gretl and R statistical packages for data analysis in marine geology. International Journal of Environmental Trends, 3(1), 39–59.

Lemenkova, P. (2019e). Numerical data modelling and classification in marine geology by the SPSS statistics. International Journal of Engineering Technologies, 5(2), 90–99.

Lemenkova, P. (2019f). Scatterplot matrices of the geomorphic structure of the Mariana Trench at four tectonic plates (Pacific, Philippine, Mariana and Caroline): a Geostatistical Analysis by R. Problems of Tectonics of Continents and Oceans. Proceedings of the 51st Tectonics Meeting, 1, 347–352.

Lemenkova, P. (2019g). Statistical analysis of the Mariana Trench geomorphology using R programming language. Geodesy and Cartography, 45(2), 57–84. https://doi.org/10.3846/gac.2019.3785

Lemenkova, P. (2019h). GMT based comparative analysis and geomorphological mapping of the Kermadec and Tonga Trenches, Southwest Pacific Ocean. Geographia Technica, 14(2), 39–48. https://doi.org/10.21163/GT_2019.142.04

Lin, W., Byrne, T. B., Kinoshita, M., McNeill, L. C., Chang, C., Lewis, J. C., Yamamoto, Y., Saffer, D. M., Moore, J. C., Wu, H.-Y., Tsuji, T., Yamada, Y., Conin, M., Saito, S., Ito, T., Tobin, H. J., Kimura, G., Kanagawa, K., Ashi, J., Underwood, M. B., & Kanamatsu, T. (2016). Distribution of stress state in the Nankai subduction zone, southwest Japan and a comparison with Japan Trench. Tectonophysics, 692, 120–130. https://doi.org/10.1016/j.tecto.2015.05.008

Ludwig, W. J., Ewing, J. I., Ewing, M., Murauchi, S., Den, N., Asano, S., Hotta, H., Hayakawa, M., Asanuma, T., Ichikawa, K., & Noguchi, I. (1966). Sediments and structure of Japan Trench. Journal of Geophysical Research, 71, 2121–2137. https://doi.org/10.1029/JZ071i008p02121

Marks, K. M. & Smith, W. H. F. (2012). Radially symmetric coherence between satellite gravity and multibeam bathymetry grids. Marine Geophysical Research, 33, 223–227. https://doi.org/10.1007/s11001-012-9157-1

Monahan, D. (2004). GEBCO: the second century. Looking towards a general bathymetric chart. Hydro International, 8(9), 45–47.

Mayer, L., Jakobsson, M., Allen, G., Dorschel, B., Falconer, R., Ferrini, V., Lamarche, G., Snaith, H., & Weatherall, P. (2018). The Nippon Foundation – GEBCO Seabed 2030 Project: The Quest to See the World’s Oceans Completely Mapped by 2030. Geosciences, 8(2), 63. https://doi.org/10.3390/geosciences8020063

Miura, S., Takahashi, N., Nakanishi, A., Tsuru, T., Kodaira, S. & Kaneda, Y. (2005). Structural characteristics off Miyagi forearc region, the Japan Trench seismogenic zone, deduced from a wide-angle reflection and refraction study. Tectonophysics, 407, 165–188. https://doi.org/10.1016/j.tecto.2005.08.001

Nakamura, Y., Kodaira, S., Miura, S., Regalla, C. & Takahashi, N. (2013). High resolution seismic imaging in the Japan Trench axis area of Miyagi. Northeast. Jpn. Geophysical Research Letters, 40, 1713–1718. https://doi.org/10.1002/grl.50364

Ogawa, Y., Kobayashi, K., Hotta, H., & Fujioka, K. (1997). Tension cracks on the oceanward slopes of the northern Japan and Mariana Trenches. Marine Geology, 141, 111–123. https://doi.org/10.1016/S0025-3227(97)00059-5

Rabinowitz, H. S., Savage, H. M., Plank, T., Polissar, P. J., Kirkpatrick, J. D., & Rowe, C. D. (2015). Multiple major faults at the Japan Trench: Chemostratigraphy of the plate boundary at IODP Exp. 343: JFAST. Earth and Planetary Science Letters, 423, 57–66. https://doi.org/10.1016/j.epsl.2015.04.010

Roberts, N. M., Tikoff, B., Davis, J. R., & Stetson-Lee, T. (2019). The utility of statistical analysis in structural geology. Journal of Structural Geology, 125, 64–73. https://doi.org/10.1016/j.jsg.2018.05.030

Smirnoff, A., Paradis, S. J., & Boivin, R. (2008). Generalizing surficial geological maps for scale change: ArcGIS tools vs. cellular automata model. Computers & Geosciences, 34(11), 1550–1568. https://doi.org/10.1016/j.cageo.2007.10.013

Sandwell, D. T., Müller, R. D., Smith, W. H. F., Garcia, E., & Francis, R. (2014). New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 346(6205), 65–67. https://doi.org/10.1126/science.1258213

Schenke, H. W., & Lemenkova, P. (2008). Zur Frage der Meeresboden-Kartographie: Die Nutzung von AutoTrace Digitizer für die Vektorisierung der Bathymetrischen Daten in der Petschora-See. Hydrographische Nachrichten, 25(81), 16–21.

Smith, W. H. F. (1993). On the accuracy of digital bathymetric data. Journal of Geophysical Research, 98(B6), 9591–9603. https://doi.org/10.1029/93JB00716

Smith, W. H. F., & Sandwell, D. T. (1995). Marine gravity field from declassified Geosat and ERS-1 altimetry. EOS Transactions American Geophysical Union, 76, Fall Mtng Suppl, F156.

Stagpoole, V., Schenke, H. W., & Ohara, Y. (2016). A name directory for the ocean floor. Eos, 97. https://doi.org/10.1029/2016EO063177

Suetova, I. A., Ushakova, L. A., & Lemenkova, P. (2005). Geoinformation mapping of the Barents and Pechora Seas. Geography and Natural Resources, 4, 138–142.

Tani, S. (2017). Understanding oceans. In The UNESCO Courier (pp. 65–69). https://unesdoc.unesco.org/ark:/48223/pf0000248106

Tsuru, T., Park, J.-O., Takahashi, N., Kodaira, S., Kido, Y., Kaneda, Y., & Kono, T. (2000). Tectonic features of the Japan Trench convergent margin off Sanriku, northeastern Japan, revealed by multichannel seismic reflection data. Journal of Geophysical Research, 105, 16403–16413. https://doi.org/10.1029/2000JB900132

Tucker, L. R. (1964). The extension of factor analysis to three-dimensional matrices. In H. Gulliksen, & N. Frederiksen (Eds.), Contributions to mathematical psychology (pp. 109–127). Holt, Rinehart and Winston.

von Huene, R., & Lallemand, S. (1990). Tectonic erosion along the Japan and Peru convergent margins. Geological Society of America Bulletin, 102, 704–720. https://doi.org/10.1130/0016-7606(1990)102<0704:TEATJA>2.3.CO;2

von Huene, R., & Culotta, R. (1989). Tectonic erosion at the front of the Japan Trench convergent margin. Tectonophysics, 160, 75–90. https://doi.org/10.1016/0040-1951(89)90385-5

Wakita, K. (2013). Geology and tectonics of Japanese islands: a review – the key to understanding the geology of Asia. Journal of Air Transport Management, 31, 75–87. https://doi.org/10.1016/j.jseaes.2012.04.014

Weatherall, P., Marks, K. M., Jakobsson, M., Schmitt, T., Tani, S., Arndt, J. E., Rovere, M., Chayes, D., Ferrini, V., & Wigley, R. (2015). A new digital bathymetric model of the world’s oceans. Earth and Space Science, 2(8), 331–345. https://doi.org/10.1002/2015EA000107

Wessel, P., & Watts, A. B. (1988). On the accuracy of marine gravity measurements. Journal of Geophysical Research, 93, 393–413. https://doi.org/10.1029/JB093iB01p00393

Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J. F., & Wobbe, F. (2013). Generic mapping tools: improved version released. EOS Transactions American Geophysical Union, 94(45), 409–410. https://doi.org/10.1002/2013EO450001

Wessel, P. & Smith, W. H. F. (2018). The generic mapping tools. Version 4.5.18 technical reference and cookbook [Computer software manual]. U.S.A.

Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., & Wobbe, F. (2019). The generic mapping tools. GMT Man pages. Release 5.4.5 [Computer software manual]. U.S.A.

Yagi, Y., Nakao, A., & Kasahara, A. (2012). Smooth and rapid slip near the Japan Trench during the 2011 Tohoku-oki earthquake revealed by a hybrid back-projection method. Earth and Planetary Science Letters, 355–356, 94–101. https://doi.org/10.1016/j.epsl.2012.08.018

Yamano, M., Hamamoto, H., Kawada, Y., & Goto, S. (2014). Heat flow anomaly on the seaward side of the Japan Trench associated with deformation of the incoming Pacific plate. Earth and Planetary Science Letters, 407, 196–204. https://doi.org/10.1016/j.epsl.2014.09.039

Yoshii, T. (1979). Detailed cross-section of the deep seismic zone beneath northeastern Honshu, Japan. Tectonophysics, 55, 349–360. https://doi.org/10.1016/0040-1951(79)90183-5

Yu, Q.-Y., Bagas, L., Yang, P.-H., & Zhang, D. (2019). GeoPyTool: A cross-platform software solution for common geological calculations and plots. Geoscience Frontiers, 10(4), 1437–1447. https://doi.org/10.1016/j.gsf.2018.08.001