Dual-channel model for shallow water depth retrieval from Worldview-3 imagery a case study of Karimunjawa waters, Central Java, Indonesia
Abstract
This research aims to estimate shallow water depth using Worldview 3 satellite imagery and dual-channel models in Karimunjawa waters, Central Java – Indonesia. To build dual-channel models, we used spectral data that had been validated in the field. Twenty-three depth data were recorded synchronous to the spectral data used in forming the semianalytical dual-channel models. Twelve models were tested using 633 depth data with a non-linear model using multiple polynomial regression analysis degrees 1 and 2. This research has shown that the proposed model has been confirmed to improve depth accuracy. Models using blue and green channels of Worldview 3 image result in good accuracies especially for estimating depths with interval from 5 to 20 meters with RMSE of 1,592 meters (5–10 meters), 2,099 meters (10–15 meters), and 1,239 meters (15–20 meters). The wavelengths of two channels have a low absorption rate to penetrate deeper waters than other wavelengths. The research also finds out that there are still models that meet the IHO standard criteria.
Keyword : satellite-derived bathymetry, water physical properties, spectral field, Worldview 3, Karimunjawa
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Benny, A. H., & Dawson, G. J. (1983). Satellite imagery as an aid to bathymetric charting in the red sea. Cartographic Journal, 20(1), 12. https://doi.org/10.1179/caj.1983.20.1.5
Bierwirth, P. N., Lee, T. J., & Burne, R. V. (1993). Shallow sea-floor reflectance and water depth derived by unmixing multispectral imagery. Photogrammetric Engineering and Remote Sensing, 59(3), 331–338.
Bramante, J. F., Raju, D. K., & Sin, T. M. (2013). Multispectral derivation of bathymetry in Singapore’s shallow, turbid waters. International Journal of Remote Sensing, 34(6), 37–41. https://doi.org/10.1080/01431161.2012.734934
Collet, C., Provost, J. N., Rostaing, P., Pérez, P., & Bouthemy, P. (2000). Spot satellite data analysis for bathymetric mapping. IEEE International Conference on Image Processing (pp. 464–467). IEEE. https://doi.org/10.1109/ICIP.2000.899440
Danoedoro, P. (2012). Introduction to digital remote sensing (1st ed.). ANDI Publisher.
Dierssen, H. M., Zimmerman, R. C., Leathers, R. A., Downes, T. V., & Davis, C. O. (2003). Ocean color remote sensing of seagrass and bathymetry in the Bahamas Banks by high-resolution airborne imagery. Limnology and Oceanography, 48, 444–455. https://doi.org/10.4319/lo.2003.48.1_part_2.0444
Gao, J. (2009). Bathymetric mapping by means of remote sensing: Methods, accuracy and limitations. Progress in Physical Geography, 33(1), 103–116. https://doi.org/10.1177/0309133309105657
Gao, J. (2010). Digital Analysis of remotely sensed imagery. McGrawHill.
Garlan. (1989). Spatial cartography of the Coralline coast: Topography and bathymetry. Service Hydrographique et Oceanographique de la Marine, Ministere de la Defense.
Ghilani, C. D. (2010). Adjustment computations: Spatial data analysis. Wiley. https://doi.org/10.1002/9780470586266
Hidayah, Z., Prayogo, L. M., & Wardhani, M. K. (2018). Sea level rise impact modelling on small islands: Case study Gili Raja island of east Java. MATEC Web of Conferences, 177, 01017. https://doi.org/10.1051/matecconf/201817701017
Jupp, D. L. B. (1989). Background and extensions to depth of penetration (DOP) mapping in shallow coastal waters. In Proceedings of Remote Sensing of the Coastal Zone International Suposium (pp. IV.2.1–IV.2.19).
Karimi, N., Bagheri, M. H., Hooshyaripor, F., Farokhnia, A., & Sheshangosht, S. (2016). Deriving and evaluating bathymetry maps and stage curves for shallow lakes using remote sensing data. Water Resources Management, 30, 5003–5020. https://doi.org/10.1007/s11269-016-1465-9
Lafon, V., Froidefond, J. M., Lahet, F., & Castaing, P. (2002). SPOT shallow water bathymetry of a moderately turbid tidal inlet based on field measurements. Remote Sensing of Environment, 81(1), 136–148. https://doi.org/10.1016/S0034-4257(01)00340-6
Leu, L. G., & Chang, H. W. (2005). Remotely sensing in detecting the water depths and bed load of shallow waters and their changes. Ocean Engineering, 32, 1174–1198. https://doi.org/10.1016/j.oceaneng.2004.12.005
Lyzenga, D. R. (1978). Passive remote sensing techniques for mapping water depth and bottom features. Applied Optics, 17(3), 379–383. https://doi.org/10.1364/AO.17.000379
Lyzenga, D. R. (1985). Shallow-water bathymetry using combined lidar and passive multispectral scanner data. International Journal of Remote Sensing, 6, 15–125. https://doi.org/10.1080/01431168508948428
Manessa, M. D. M., Haidar, M., Hartuti, M., & Kresnawati, D. K. (2017). Determination of the best methodology for bathymetry mapping using spot 6 imagery: A study of 12 empirical algorithms. International Journal of Remote Sensing and Earth Sciences (IJReSES), 4(2), 127–136. https://doi.org/10.30536/j.ijreses.2017.v14.a2827
Martin, S. (2014). An introduction to ocean remote sensing. Cambridge University Press. https://doi.org/10.1017/CBO9781139094368
Mather, P. M. (2004). Computer processing of remotely sensed data: An introduction. (3 ed.). John Wiley and Sons.
Mishra, D., Narumalani, S., Rundquist, D., & Lawson, M. (2006). Benthic habitat mapping in tropical marine environments using quickbird multispectral data. Photogrammetric Engineering and Remote Sensing, (9), 1037–1048. https://doi.org/10.14358/PERS.72.9.1037
Misra, A., Vojinovic, Z., Ramakrishnan, B., Luijendijk, A., & Ranasinghe, R. (2018). Shallow water bathymetry mapping using Support Vector Machine (SVM) technique and multispectral imagery. International Journal of Remote Sensing, 39(13), 4431–4450. https://doi.org/10.1080/01431161.2017.1421796
Nuha, M. U. (2019). Optimization of ocean depth extraction analytical parameters with high resolution satellite imagery in the shallow sea zone [PhD Thesis]. Universitas Gadjah Mada, Yogyakarta, Indonesia.
Prayogo, L. M., & Basith, A. (2020). Image performance test on Worldview 3 and sentinel 2A for mapping shallow water depth (case study in Karimunjawa Islands, Central Java). JGISE: Journal of Geospatial Information Science and Engineering, 3(2), 161–167. https://doi.org/10.22146/jgise.59572
Provost, J. N., Collet, C., Perez, P., & Bouthemy, P. (1999). Hierarchical unsupervised multispectral model to segment SPOT images for ocean cartography. In IEEE International Conference on Image Processing (pp. 333–337). IEEE. https://doi.org/10.1109/ICIP.1999.821625
Sánchez-Carnero, N., Ojeda-Zujar, J., Rodríguez-Pérez, D., & Marquez-Perez, J. (2014). Assessment of different models for bathymetry calculation using SPOT multispectral images in a high-turbidity area: The mouth of the Guadiana Estuary. International Journal of Remote Sensing, 35(2), 493–514. https://doi.org/10.1080/01431161.2013.871402
Satellite Imaging Corporation. (2020, January 18). Worldview-3 Band Spesifications. https://www.satimagingcorp.com/
Stumpf, R. P., Holderied, K., Robinson, J. A., Feldman, G., & Kuring, N. (2003a, July 13–17). Mapping water depths in clear water from space. In Proceedings of the 13th Biennial Coastal Zone Conference Baltimore.
Stumpf, R. P., Holderied, K., & Sinclair, M. (2003b). Determination of water depth with high-resolution satellite imagery over variable bottom types. Limnology and Oceanography, 48(1), 547–556. https://doi.org/10.4319/lo.2003.48.1_part_2.0547
Su, H., Liu, H., & Heyman, W. (2008). Automated derivation of bathymetric information from multi-spectral satellite imagery using a non-linear inversion model. Marine Geodesy, 31(4), 281–298. https://doi.org/10.1080/01490410802466652
Sutherland, J., Walstra, D. J. R., Chesher, T. J., van Rijn, L. C., & Southgate, H. N. (2004). Evaluation of coastal area modelling systems at an estuary mouth. Coastal Engineering, 51(2), 119–142. https://doi.org/10.1016/j.coastaleng.2003.12.003
Walpole, R. E. (1968). Introduction to statistics. Macmillan.