Remote sensing products are effectively used as a tool for decision making in various fields, especially in medical research and health care analyses. GIS is particularly well suited in this context because of its spatial analysis and display capabilities. The integration of RS techniques in public health has been categorised as continuous and discrete strategies where latter is preferred. We have investigated the integration of these approaches through linguistic interpretation of images. In this paper, we propose a framework for direct natural language interpretation of satellite images using probabilistic grammar rules in conjunction with evolutionary computing techniques. Spectral and spatial information has been dynamically combined using adaptive kernel strategy for effective representation of the contextual knowledge. The developed methodology has been evaluated in different querying contexts and investigations revealed that considerable success has been achieved with the procedure. The methodology has also demonstrated to be effective in intelligent interpolation, automatic interpretation as well as attribute, topology, proximity, and semantic analyses.
Arun, P. V. (2013). Spatial analysis in public health domain: an NLP approach. Geodesy and Cartography, 39(4), 149-157. https://doi.org/10.3846/20296991.2013.871140
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in Geodesy and Cartography as Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECH to make alternative agreements.